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Abstract

The accurate and computationally efficient estimation of signals in noise has long been a field

of intense study. The signal present in natural processes is many times well modeled as the sum

of real or complex exponential functions. The noise for computational simplicity is often assumed

to be white or uncorrelated. There exist, however, many cases where noise is, in fact, correlated.

Accurate and efficient estimates of the signal in these cases require that the noise correlation be

taken into account. This is case for the specific application of interest in this dissertation, Synthetic

Aperture Radar (SAR), whose images of objects may be modeled as the sum of two-dimensional

complex exponentials (the electromagnetic scattering centers on the target).

The maximum likelihood estimate of the signal is often considered the best possible estimate of

the signal. While many white and colored noise maximum likelihood estimates have been developed,

efficient solutions to the estimation of one- and two-dimensional exponentials in unknown colored

noise do not exist.

This dissertation develops techniques for estimating exponential signals in unknown colored

noise. The Maximum Likelihood (ML) estimators of the exponential parameters are developed.

Techniques are developed for one and two-dimensional exponentials, for both the deterministic

and stochastic ML model. The techniques are applied to Synthetic Aperture Radar (SAR) data

whose point scatterers are modeled as damped exponentials. These estimated scatterer locations

(exponentials frequencies) are potential features for model-based target recognition.

The estimators developed in this dissertation may be applied with any parametrically modeled

noise having a zero mean and a consistent estimator of the noise covariance matrix. ML techniques

are developed for a single instance of data in colored noise which is modeled in one dimension as 1)

stationary noise, 2) autoregressive (AR) noise and 3) autoregressive moving-average (ARMA) noise

and in two dimensions as 1) stationary noise, and 2) white noise driving an exponential filter. The

classical ML approach is used to solve for parameters which can be decoupled from the estimation

problem. The remaining nonlinear optimization to find the exponential frequencies is then solved

by extending white noise ML techniques to colored noise. In the case of deterministic ML, the com-

putationally efficient, one and two-dimensional Iterative Quadratic Maximum Likelihood (IQML)

xii



methods are extended to colored noise. In the case of stochastic ML, the one and two-dimensional

Method of Direction Estimation (MODE) techniques are extended to colored noise. Simulations

show that the techniques perform close to the Cram6r-Rao bound when the model matches the

observed noise.

Application to SAR data first requires that damped exponentials have not been distorted by

SAR processing. Then, 1-D colored noise techniques provide better estimates at low model orders

(number of exponentials) than white noise techniques. The 2-D techniques based on the colored

noise model also more accurately model SAR data than existing 2-D white noise techniques. With

an appropriate focusing technique and matching technique for the exponentials in each dimension,

scatterers are located with high resolution in SAR images and colored noise techniques improve

these location estimates.



Maximum Likelihood Estimation of Exponentials in Unknown Colored Noise

for Target Identification in Synthetic Aperture Radar Images

L Introduction

1.1 Background

This dissertation presents several new techniques for the estimation of sinusoidal or exponen-

tial signals in the presence of unknown colored noise. They include techniques for estimation in one

and two dimensions. These new techniques can be used to estimate the locations of electromagnetic

scattering centers on objects viewed with Synthetic Aperture Radar (SAR). They are quite general

and can be applied to any exponential estimation problem involving colored noise. The use of these

estimation techniques although centered on the particular characteristics of SAR (a single instance

of data, modeled as the sum of damped exponentials), are not limited by these characteristics, but

can be easily extended to multiple data instances and undamped exponentials.

The use of image data to detect and identify targets is pervasive in Air Force operations. One

particular sensor of importance due its stand-off and resolution capabilities is Synthetic Aperture

Radar (SAR). A SAR image is formed from radar target returns collected over a flight profile

that simulates a very large aperture antenna. This SAR image data is used by aircrew or ground

observers to provide reconnaissance, targeting, or navigation information. Attempts to convert the

SAR data to a reduced set of derived features are ongoing efforts. With this reduced set of data

more sophisticated pattern recognition algorithms can be used to efficiently detect and identify

targets. The processor required to create SAR images with sufficient resolution is a major cost in

SAR systems. The image resolution and size required for target recognition can easily exceed the

cost associated with human interpretation of the data. One means of avoiding the cost associated

with additional resolution is to directly use the radar scattering data or complex phase history

without generating a SAR image. Pattern recognition algorithms can then be applied directly to

features extracted from the phase history thereby avoiding the cost of SAR imagery.

The most significant of these extracted features provide a direct correlation to the locations

of electromagnetic scattering centers on the target. These locations can be estimated with great

accuracy by parametrically modeling the SAR data. To efficiently estimate these SAR model



parameters, the model must conform to or fit the SAR data. Methods of fitting damped exponentials

to SAR data can more accurately estimate scatterer locations when unknown background clutter

or colored noise is also considered. The colored noise techniques developed in this research improve

the accuracy in estimating exponential scatterer locations and thus increase the suitability of using

exponential scatterer locations as pattern recognition features.

1.2 Dissertation Outline

This dissertation is developed along the following lines. Chapter 2 introduces the problem

solved by this dissertation, explores the previous work in this area, and describes the approach in

this dissertation to solve the problem. Chapter 3 presents notation and mathematical preliminaries

used as a basis for subsequent developments. Chapter 4 introduces the specific problem of para-

metric estimation of scatterers in SAR data. The assumptions that lead to the damped exponential

model are examined. Some of the potential pitfalls that are associated with collecting, processing,

and imaging data containing damped exponentials are presented. In Chapter 5, the parametric

estimation of one-dimensional damped exponentials in colored noise is examined. Because of its

robust statistical properties, the Maximum Likelihood (ML) estimation technique is applied to

solve the estimation problem. This chapter also develops several new estimation techniques that

model the colored noise as a stationary noise sequence, an autoregressive (AR) noise sequence, or an

autoregressive moving average noise sequence (ARMA). Both the deterministic ML model, which

models the exponential amplitude, frequency and phase as unknown constants, and the stochastic

ML model, which models the amplitudes as random, are examined. Chapter 6 examines the expo-

nential estimation problem in colored noise for two dimensions. The 1-D deterministic techniques

developed in the previous chapter are extended to 2-D for the deterministic ML model. Compu-

tationally less intensive techniques that estimate each dimension independently are developed for

the stochastic ML model. Chapter 7 comes full circle and applies the colored noise techniques

developed to 1-D and 2-D SAR data. The efficiency of the colored noise techniques in fitting the

model to the data is compared with the white noise ML techniques and other techniques such as

overmodeling (fitting more exponentials than expected to the data and selecting those that best fit

the data). The suitability of scatterer locations as a pattern recognition feature is also examined.

Chapter 8 presents conclusions and some potential areas of future research.

2



1.3 Contributions

The contributions in this dissertation include the solution of the 1-D maximum likelihood

problem of estimating deterministic exponentials in unknown colored noise. Computationally effi-

cient estimation techniques for several noise models are developed. Similar techniques are developed

for the stochastic maximum likelihood problem. A new spectral model for 2-D noise is developed

leading to new 2-D estimation techniques for deterministic and stochastic maximum likelihood.

Additionally, a mathematical model for representing damped exponentials on an irregularly sam-

pled grid is developed and leads to a computationally efficient method for interpolating or focusing

SAR images containing damped exponentials.
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I. Problem and Approach

2.1 Problem

The general problem solved in this dissertation is most easily understood in terms of the

array processing problem. In the array processing problem, the aspects of exponential estimation

in several dimensions can be observed. In addition, because of the general nature of the models used

in this dissertation, the approaches derived have applications in all areas where spectral estimation,

system identification, or harmonic retrieval play a role. The parameters of any process, that can

be modeled as the sum of exponential signals in unknown Gaussian noise, may be estimated with

the techniques derived in this dissertation.

In the array processing problem, a set of sensors are placed at fixed locations in a wavefield

that consists of a small number of waves as shown in Figure 1. These sensors then measure the

amplitude and phase of the wavefield at those locations. When the propagation frequency of the

waves is known, an array may be designed such that measurement data can be used to estimate the

directions of propagation of the waves. These directions of arrival (DOAs) are one of the parameters

estimated by the techniques of this dissertation.

2.1.1 Wavefield Model. The wavefield model whose parameters are to be estimated is

now constructed for the specific case of interest in this dissertation, the electromagnetic wavefield

in free space. Applications to many other wavefields and medium exist, including for example,

acoustic waves in the ocean (sonar) and acoustic waves in rock (seismography). The array processing

problem for the electromagnetic wavefield is quickly derived from Maxwell's equations [14] [32]. The

parametric model of the signal measured at a sensor, at time t, and location r = [ r] r r T

is

y(r,t) = s(r,t)e (wt- rTk) (1)

where s(r,t) is the amplitude of the wave, w is the propagation frequency of the wave, and k =

C os0sin 0 sin 0sin ¢ cos IT where c is the speed of light. Now, with a set of appropriately

placed sensors the wavefield can be measured, and the parameters {s, 0, 0, w} estimated from the

measured data. The position of the sensors samples the wavefield at various locations, rm for

m = O..M - 1 and the sensors are sampled with sampling period T, at discrete times, t = nT

for n = O..N - 1, to produce the measured data, y(m,n). The simplest array geometry (sensor

4
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Figure 1. A Uniform Rectangular Array

positioning) is given by the uniform linear array (ULA). In the ULA, the sensors are placed in a

line at a fixed interval. With the uniform linear array, only one direction of arrival angle, 0, can

be estimated. A simple extension of the ULA to two dimensions is the uniform rectangular array

(URA), a rectangular grid of sensors rm1 m2 for mi = O..M1 - 1, m 2 = O..M 2 - 1, which allows both

direction of arrival angles, 0 and €, to be estimated. The array shown in Figure 1 is such an array.

2.1.2 One-Dimensional and Two-Dimensional Data Characterizations. Depending now

on the statistical assumptions made about the parameters, the measured data may be character-

ized in one of several one- and two-dimensional estimation problems. Three of the most common

characterization are detailed here. If sensor data measured a different times is considered uncor-

related, the data is temporally white and the sensor data for each time sample is considered a

different statistical instance of the sensor data. In the 1-D ULA this leads to a one-dimensional

estimation problem (parameters {s, 0, known w}) with the sensors rm for m = 0..M - 1 where

the data from each time sample is used to collect statistical information (mean, covariance) on the

measured sensor data. With the same assumption, the 2-D uniform rectangular can be used to

solve the two-dimensional estimation problem (parameters {s, 0, 0, known w}) with sensors rmIm 2

for ml = 0..M 1 - 1, m 2 = 0..M2 - 1, and data instances n = 0..N - 1. This 2-D array processing

problem may also be extended to synthetic aperture radar (SAR) as shown in Chapter 4. The last

5



data characterization considered in this dissertation is that involving a single sensor. This case

reduces to a one-dimensional estimation problem (parameters {s, w}) with a single data instance,

m = 1. This is a time-series analysis or one-dimensional spectral estimation problem.

As always in estimation problems, the goal of the estimation, accuracy, is limited by the

available data. In many problems the numbers of sensors is extremely limited. A simple sonar

array may contain less then ten sensors. The time available to estimate the parameters is also

limited, both from signal duration and reaction time (i.e. as in a fire control system), and drives

the computationally complexity of the estimation technique. Many fast estimation techniques have

limited accuracy and make simplifying assumptions about the data for computationally tractable

results. The problem then, succinctly stated, is to accurately estimate the parameters of particular

array and data model chosen in a computationally efficient manner with as few assumptions on the

data as possible. The extension of the array processing problem to the scatterer location problem

in SAR data then allows the application of the array processing solutions to SAR data.

2.2 Previous Work

This section details previous research that has been completed in the areas that this disserta-

tion draws on as a basis for the new results herein. The areas covered include spectral estimation,

maximum likelihood estimation, two-dimensional exponential estimation, array processing in col-

ored noise, and scatterer identification in synthetic aperture radar images. As always, such a

summary can not hope to be complete given the large body of work completed in each of the areas.

Historical summaries of some of these areas are found in [35] [49] [66].

2.2.1 Spectral Estimation. The theory involved in the majority of the research in spectral

estimation can be traced back to Fourier (1807). These nonparametric techniques are appropriately

named Fourier analysis. It is, however, Bunson and Kirchhoff who are attributed with the idea

that the spectrum of the light (signal) emitted by a substance can be used to characterize that

substance and its physical properties [13]. The inherent utility of spectral estimation is the physical

significance of the representation of a signal by its spectrum, whether the spectrum represents the

molecular content of a substance, the key vibrations in an elastic body, the stability and response of

a dynamic system, or the frequency and direction of propagating electromagnetic waves. Modern

interest in characterizing the spectrum of random (statistical) signals begins with Wiener [83]

6



who developed the autocorrelation function for such signals and its Fourier transform relation

with the power spectral density, the magnitude squared of the signal spectrum. Despite robust

performance in most situations the Fourier techniques contain inherent limitations. The resolution

of the Fourier spectrum is limited to a set of quantized frequencies and the variance of the estimated

spectral energy at these frequencies is equal to the square of the estimate. Although a similar

methodology for estimating exponential signals can be traced to Prony [55], the introduction of a

parametric model by Yule [87] to characterize random processes heralded the introduction a high

resolution, consistent estimators of the power spectrum of a random process. The basis for both

these techniques is the homogeneous difference equation e[n] = 0,

apy[n] + ap-ly[n - 1] + ... aoy[n - p] = c[n] (2)

where the ai for i = 0..p are the coefficients of the difference equation and y[n] are samples of the

random process. The solution to the difference equation is the sum of p damped exponentials

y[n] = siA! (3)
i=1

where the si are the exponential amplitudes and the Ai = e' i+ h i are the damped exponentials.

With these parametric estimation techniques, the accuracy of the estimates is limited only by the

noise present in the data. The key difference between the approaches of Prony and Yule is that

Yule envisions the residuals remaining after applying the difference equation, c[n], to the be a white

noise driving force that is filtered by the difference equation to produce the colored noise process,

y[n], y[n- 1], ... y[n-p]. This is the first of the rational polynomial noise models, the autoregressive

(AR) noise model. Prony, conversely, considers the exponentials to be fixed deterministic signals

and the residuals an independent white noise process. Both methods arrive at the same spectral

estimate thus they both may be used to estimate both exponential signals and colored noise. A key

theorem that relates these two types of random processes is due to Wold [84] and states that any

random process may be decomposed into two uncorrelated components, a completely deterministic

process that may be exactly estimated from its past samples, and a random process that may be

modeled as white noise driving a linear difference equation.
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2.2.1.1 Modern Spectral Estimation. In modern spectral estimation the data is

modeled as instances of a random vector, Yn [ Y,,o Y,, "' n,M-1]T for n = O..N - 1,

and the estimation of the parameters of the modeled data is accomplished by eigenanalysis of the

covariance matrix (or some related matrix) of the data,

Ryy = E{yy*}, (4)

where E{.} is the expected value operation and (.)* indicates complex conjugate transpose. In the

case where the data is modeled as a linear combination of signals and noise,

y = Gs + w, (5)

where the columns of the matrix G characterize the signals, s is a vector of the signal amplitudes,

and w is zero-mean Gaussian noise. The model for the covariance matrix of the data is then

Ryy = GPG* + R, (6)

where P = E{ss*} and R,, is the covariance matrix of the noise. The eigenanalysis methods,

which begin with Pisarenko [54], were proven with Schmidt's multiple signal classification (MUSIC)

method [61] which characterize the spectrum of the data in terms of signal and noise eigenspaces.

For the case of white noise where R,, = o21 and -2 is the noise variance, this allows the noise

portion of the data (the M - p smallest eigenvalues) to be easily discarded. Other eigenanalysis

methods included Estimation of Signal Parameters via Rotational Invariance Techniques (ESPRIT)

[57] which measures the signal with one set of sensors then measures the signal with a second identi-

cal but shifted (in location) set of sensors. An eigenanalysis of these two measurements produces an

estimate of the signal. In the last type of eigenanalysis method, the principal components method

[76], a form of Prony's method is used and the number of signals is overestimated. Thus, as noted

earlier the estimate models both signal and noise. As in the previous methods, an eigenanalysis of

the data allows the noise part of the measurement to be discarded. In the next section, the close

relation between eigenanalysis method such as MUSIC and the maximum likelihood estimation is

explored.
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2.2.2 Maximum Likelihood Estimation. Maximum likelihood estimation is based on find-

ing the probability density function (and model parameters) that best fits the observed data. In

estimation problems, maximum likelihood (ML) estimation produces accurate estimators. Several

notable large-sample properties of ML estimation have been proven. ML estimation produces con-

sistent estimates (i.e. as the number of data samples grows the value of the estimator approached

the true value). ML estimation has the best possible efficiency. If an unbiased estimator exists that

attains the estimation performance bound, the Cram6r-Rao bound (see Appendices C and D), it is

the ML estimator. The ML estimator is asymptotically efficient. As the number of data samples

grows the variance of the estimate approaches the Cram6r-Rao bound (CRB). Additionally, Monte

Carlo simulations have shown that ML estimators perform well on small size data samples as well.

2.2.3 Deterministic and Stochastic Maximum Likelihood. The method of maximum like-

lihood was originated by Fisher (1920) whose Fisher information matrix characterizes the CRB.

Contributions to the method were made by Cram6r (1946), Rao (1946), and Wald (1944). The

application of maximum likelihood estimation to the array processing problem can be traced to

[3] [4] [26] [80]. Most notably maximum likelihood estimation has been applied with two distinct

assumptions. The first assumption is that the signals are nonrandom, in which case the signal is

the mean of the data

E{y} = Gs, (7)

and the variance of the data is due solely to additive noise

Ryy = Rww. (8)

This case is denoted as deterministic maximum likelihood. The second assumption is that the

signal (amplitudes) is random. Then, the data has zero mean and covariance

Ryy = GPG* + Rww (9)

where P = E{ss*}. This case is called stochastic maximum likelihood. In a classic series of papers

Stoica and Nehorai [68], [71], [72] demonstrate that for a fixed number of sensors, m = 0..M - 1,

as the number of data instances grows, N -* oc, stochastic ML produces asymptotically better
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estimates than deterministic ML. Also, in the papers the MUSIC spectral estimation is shown to

be asymptotically equivalent to deterministic ML [68]. Alternatively, in the case where N = 1 and

the number of sensors grows, M --* oo, (or, equivalently, M = 1, N --* oo), deterministic ML and

stochastic ML asymptotically produce the same results [79]. All of the ML techniques cited thus

far require some form of search of the signal space to find the columns of the matrix G that best

fit the data. A much more computationally attractive approach applicable to the ULA or time

series problem was proposed independently by Kumaresan, Scharf and Shaw [33], and Bressler and

Macovski [6]. In this approach, the deterministic ML problem is solved by iterating a linearized

solution to the problem. The deterministic ML solution in this case is a quadratic optimization.

With this technique, constraints are easily imposed to attain solutions that are a restricted set

of the damped exponential model (i.e. exponentials on unit circle in complex plane, real valued

exponentials, or sine waves), and increase estimation accuracy [34] [62]. This technique is called

Iterative Quadratic Maximum Likelihood (IQML). The eigenspace equivalent of this technique,

Method of Direction Estimation (MODE), was developed by Stoica and Sharman [69]. With an

appropriate weighting factor MODE achieves the same accuracy as stochastic ML as the number

of data instances, grows N -- 00 [70].

2.2.4 Two-Dimensional Exponential Estimation. Several two-dimensional exponential es-

timation techniques have recently been developed that do not require a computationally intensive

search of the 2-D frequency plane. These techniques either perform a one-dimensional estimation

once in each dimension and pair the results (a 1-D by 1-D method) or they simultaneously estimate

the 2-D frequencies (a full 2-D method). The first technique by Rao and Kung [2] uses an eigenanal-

ysis of the measure data and a technique similar to ESPRIT to attain the spatial frequencies of the

exponentials in each dimension. These frequencies are then paired according to which combinations

best match the amplitudes of the measure data. The second technique, Matrix Enhanced Matrix

Pencil (MEMP) from [25] also exploits the principle of ESPRIT to find the spatial frequencies.

This method also requires pairing, however, it efficiently estimates the 2-D exponential frequencies

by forming an estimate of the 2-D covariance matrix. A technique called 2D Prony [59] is an

extension of the 1-D Prony technique. This method uses a technique of overmodeling (estimating

more frequencies than the data contains) similar to the principal components method and has a ro-

bust method of selecting the two-dimensional exponential frequency combinations that produce the
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highest energy signal. The remaining two techniques are derived from the two maximum likelihood

approaches to the problem, stochastic ML and deterministic ML. The stochastic ML technique,

2D MODE, was developed by Li and Stoica [38]. This method uses the 1-D MODE technique

and treats each columns or row as a separate data instance when estimating the frequencies of the

columns or rows. A full 2-D technique was developed by Clark [11] which follows the approach of

the 1-D IQML method. This method characterizes the linear space orthogonal to linear space of

the signal and also parameterizes the problem in terms of a known noise covariance matrix. Since

the general maximum likelihood problem formulation is easily parameterized with the covariance

matrix of the noise, the ML techniques are also the most readily modified for the case of unknown

colored noise.

2.2.5 Array Processing in Colored Noise. The white noise assumption in the array

processing problem is in some cases invalid. Although consistent estimates are still attained by white

noise techniques in the presence of colored noise, additional estimation accuracy can be attained by

incorporating the noise coloration in the model [78]. When the noise covariance matrix is known

the most common colored noise technique is called whitening. In this method the covariance matrix

of the data is modified to make the noise component uncorrelated, then a white noise technique

is applied to the data. In most cases the effect of this whitening on the signal is not taken into

account and the signal estimate is still not optimal. For the ULA or URA, the known colored

noise methods developed by Clark [9] produce efficient estimates for the one- and two-dimensional

deterministic ML problem.

For the case of unknown colored noise, several approximate maximum likelihood methods

have been developed. Such methods developed by Le Cadre and Wax preform a search over the

potential signal and noise eigenvalues to find those that best represent the data covariance matrix

[36], [81]. The methods of B6hme [5] and Friedlander [17] characterize the noise covariance matrix

as a linear combination of known matrices, then search for the ML signal and noise estimate.

Other unknown colored noise techniques include the instrumental variable approach [68] which

estimates the spatial noise using temporally uncorrelated data samples, and an iterative Toeplitz

covariance matrix method [77] which estimates the ML mean (signal) and Toeplitz covariance

matrix (stationary noise). The previous techniques all involve collecting multiple instances of data

to form the data covariance matrix.
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The first unknown colored noise method for the single data instance was developed by Kay

and Nagesha [29], [47], [48]. This method is an approximation of the ML estimate, however, the

single data instance problem is of special interest in the SAR scatterer location problem. Also,

the exact solution to unknown colored noise problem for stochastic ML has been developed by Ye

and Degroat [86]. Although it also involves a multidimensional search for the ML estimates, the

solution provides insight into the relationship between white and colored noise techniques and how

computationally efficient white noise techniques might be extended to colored noise.

2.2.6 Scatterer Location in Synthetic Aperture Radar Images. The application of ex-

ponential estimation techniques to synthetic aperture radar is quite recent. The first application

involves enhancements to the images themselves. When a small set of scatterers is identified in a

SAR image, a simplified and more appealing SAR image can be produced. To this end, Gupta

applies a form of Yule's method in each dimension [18], and Hua, et al. apply the MEMP method

[24]. These estimation techniques are seen to estimate the locations of the dominant scatterers in

the SAR images. A foundation for the work in scatterer location was developed by Sacchini who

develops estimates of the scatterer locations in SAR data of simple objects (e.g. flat plates) [58].

Several recent results have be published by Li involving the application of Fourier and model-based

methods to computer generated SAR data. In these results the Fourier based methods are the

most robust, and the performance of model-based methods is significantly degraded due to the

significant amount non-exponential signal present in the SAR data [39], [40]. This degradation is

also noted in [53].

2.3 Approach

As noted above, data from the intended application, SAR, contains energy not well modeled

as exponential signal. This dissertation investigates modeling this energy as unknown colored noise.

The SAR scatterer location problem and the array processing problem are related, thus unknown

colored noise solutions to the array processing problem are explored. Of the methods presented that

solve the array processing problem, the maximum likelihood methods provide the most accurate and

consistent estimates of the array processing model. These methods allow for use of a parameterized

noise covariance matrix and thus can eliminate the limiting white noise assumption and provide

more accurate solutions. The approach then begins with these methods.
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Next, of the array processing characterizations, the one-dimensional time series (or, equiv-

alently, for the ULA, the single data instance case) has been researched the longest and is the

most well understood. Many signal and noise models exist for time series analysis and maximum

likelihood estimates for these models are well developed. Since the intended application, SAR,

involves diverging electromagnetic waves, the signal model is the damped exponential model and

the noise models are taken from the set of rational polynomial models. As noted earlier, the deter-

ministic and stochastic ML assumptions do produce different results, thus, unknown colored noise

solutions under both assumptions are explored. The results are compared in terms of the intended

application, a single data instance of damped exponentials in colored noise.

The intended application is two-dimensional, thus, 2-D techniques are investigated. The

two-dimensional deterministic and stochastic ML methods also allow for use of a parameterized

noise covariance matrix. These two-dimensional techniques are also well related to their one-

dimensional counterparts, thus, the methodology employed in the 1-D colored noise techniques is

easily extended to two dimensions. Additionally, the different two-dimensional assumptions of 2-D

IQML (2-D exponentials at distinct frequencies in each dimension) and 2-D MODE (exponentials

at any intersection of a 1-D by 1-D frequency grid) allow development of techniques with radically

different computational and scatterer location performance.

The array processing problem and the SAR scatterer location problem are related through

a data interpolation or focusing step. The unknown colored noise array processing techniques

may be applied to SAR data after the SAR data is interpolated to a uniform rectangular grid.

Improvements in scatterer location and the fit of colored noise models to the data are investigated.

The effects of the focusing method, colored noise model, the deterministic or stochastic assumption,

the 1-D by 1-D or full 2-D exponential assumption, and the 1-D by 1-D matching technique used

are also investigated.

13



III. Mathematical Preliminaries

This chapter presents some mathematics that provide a foundation for the developments of

this dissertation. Many references exist for the following material on matrix algebra and random

vectors. The principal references used in developing these sections are [27] [41] [51] [66].

3.1 Matrix Algebra in Signal Processing

In signal processing as in many areas of engineering, matrices and linear algebra provide

an important tool for solving problems. This section introduces some of mathematical concepts

that are exploited in solving the problems explored in this dissertation. Let A and B be complex

matrices then the following notation defines specific operations on these matrices.

AT is the transpose of A.

A* is the complex conjugate transpose of A.

vec(A) is the vector formed by stacking the columns of A.

A ® B is the Kronecker product of A and B.

A a B is the Hadamard (Schur) product of A and B.

A+ is the pseudoinverse of A.

PA is the projection onto the column space of A.

3.1.1 Singular Value Decomposition. One facet of matrix algebra that has become of

increasing importance in solving complicated problems is the Singular Value Decomposition (SVD).

In the SVD any complex valued n x m matrix, H, may be decomposed as the product of three

matrices

H = USV*, (10)

where (.)* indicates complex conjugate transpose. Here, the n x n matrix U, and the m x m matrix

V are unitary matrices (UU* = I or U 1 = U*) containing the left and right singular vectors,

respectively. S is an n x m diagonal matrix whose unique real-valued elements called the singular

values are commonly ordered according to decreasing magnitude. The matrices U and V are not

unique, however, they provide a valuable insight into the range (x :x = HO, x E Rnx 0 c Rmxi)

and null space (0 : HO = 0) of the matrix H. If the rank of H (the number of basis elements for the

range of H) is r, then S contains r nonzero real singular values and the first r columns of U form

a basis for the range of H, and the last m - r columns of V form a basis for the null space of H.
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Efficient low rank (k < r) approximations of H can also be formed by setting to zero the smallest

r - k singular values in S.

3.1.2 Cholesky Decomposition. A special case of the SVD occurs when H is Hermitian

(H = H*). Then n = m and the eigenspace decomposition of H is

H = VDV*, (11)

where V contains the eigenvectors of H, and D is diagonal with real eigenvalues. When D con-

tains no negative elements, H is positive semidefinite, and the singular value decomposition and

eigenspace decomposition of H are the same with U = V and S = D. When the diagonal of D also

contains no zero values, H is positive definite and the Cholesky decomposition of H is

I L

H =VD2DV*= R*Q*QR = R*R, (12)

where DiV* = QR is the QR decomposition of D2 V*, where Q is unitary and the n x n matrix

R is upper triangular.

3.1.3 Quadratic Solutions. Often the problem to be solved involves an optimization

and SVD is again a useful tool. The recurrent optimization problem in this dissertation is the

minimization of a quadratic form

miny*A*Ay = min JIAyI2 (13)
y y

where 11"112 indicates the 2-norm, A is nxm, and y =[ yo -xT ]T. When the solution is constrained

such that 1l1I2 = 1, the solution is minimizer of the Rayliegh quotient

min y*A*Ay (14)y y*y

and the minimizing y, Ymin, is the eigenvector associated with the minimum eigenvalue of A*A.

When the constraint is Yo = 1 and A*A is positive definite then

Yrnin = AA 1  (15)
c*(A*A)-lc'
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where c =[ 1 0 T ]T. When yo = 1, and A*A is rank deficient by one, then restating the mini-

mization leads to the least squares problem

minb I I = min Ib-AxI12 (16)

X 
--I bIAb x

where b contains the first column of A, and A contains the last N - 1 columns of A. The solutions

to this problem are the Moore-Penrose pseudoinverses

Xmin = (A*A)1 A <b n(17)

where (.)+ indicates pseudoinverse. The general pseudoinverse of A is constructed with the SVD

and includes the case where A has neither full column or row rank. The SVD pseudoinverse is

A + = VD+U* (18)

where D+ is constructed by inverting the non-zero elements of D.

3.1.4 Projections. The pseudoinverse then leads to another type of matrix that simplifies

complex solution formula, the projection. A projection may be constructed for the matrix A as

fAA+ m <n

PA= (19)
A+A n<m

The eigenvalues of the projection matrix are zero or one, and the eigenvectors associated with the

eigenvalue one form a basis for the range of A. Thus for m < n

PAA = A. (20)

Consequently, the projection is idempotent,

P2 = PA. (21)

16



Another potential way to simplify an optimization is to perform the optimization in the space

orthogonal to the original problem formulation. For example,

maxyPAy = min y(I - PA)Y. (22)
Y Y

When a matrix representation for the orthogonal space, G, can be found such that A*G = 0 and

the matrix [ A G ] is full rank, the projection onto the orthogonal space can be constructed,

PG = G(G*G)-G*, (23)

and the projections form a resolution of the identity matrix,

PG + PA = 1. (24)

Thus,

miny(I - PA)Y = minyPGy. (25)
y y

3.1.5 Signal Processing Matrices. Two structured matrices play a special role in signal

processing and define orthogonal subspaces. When evenly spaced samples of a periodic function

are collected and placed in a vector y, they may be modeled with an n x p Vandermonde matrix

of the periodic components, G, and a vector of the component amplitudes s,

1  ...

y = s =Gs, (26)

•n- ... An-

The matrix that defines the space orthogonal to the matrix G is an n - p x n Toeplitz matrix (the

elements along each diagonal are identical). This matrix A contains the coefficients of a polynomial
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a(A) = apAP +...ai A'+ ao whose roots are {fA,...,Ap},

a0 a, ... ap 0

A*a (27)

0  a ap

Thus A*G = 0.

3.1.6 Kronecker and Hadamard Producis. Another useful matrix algebra tool is the

Kronecker product which is defined as

aj 1B a 12B ... ajjB

a21B a 22B ... a21BA ®B = (28)

aklB ak2B ... akIB

where A is a k x 1 matrix, B is a m x n matrix, and A ® B is a mk x nI matrix that contains

blocks of the matrix B individually multiplied by each element of A. With the Kronecker product,

operations can be performed simultaneously on the rows and columns of a matrix. For example, in

the matrix product AXBT, A and B are separable operations that act on the rows and columns

of the matrix X, respectively. When the columns of the matrix AXBT are stacked in the vec

(vectorize) operation [41], the result is conveniently given in terms of the Kronecker product as

vec(AXB T ) = (B 0 A)vec(X). (29)

The Kronecker product has several useful properties

(A ® B)(C ® D) = (AC) ® (BD) (30)

(A+ B) ® (C+ D) = (A® C) + (A ® D) + (B ®C) + (B ® D) (31)

tr(A ® B) = tr(A)tr(B) (32)

18



and

(C ® D)0 P = C ® D (33)

where op includes transpose, conjugate transpose, pseudoinverse and inverse when the individual

inverses exist. Lastly, the Hadamard (Schur) product of two matrices of the same size is defined as

alibi1  a1 2b 12 ... al bl

a 21 b21  a22b22  ... a2lb2(A ®BS= (34)

aklbkl ak2bk2 ... aklbkl

3.2 Random Vectors

If the elements of the vector x are samples of a random process, then the distribution of the

vector can be described with a probability density function (PDF). In the case where the samples

of the length N, complex vector x are complex circular symmetric Gaussian, the PDF is

1 -_ '(~ )Rlxu (35)fAx) -- Irg l c0 2R I

where for the expected value operation, E{.},

E{x} p, (36)

and

E{(x - p)*(x - p)} = or2 R. (37)

Additionally, for complex data the real and imaginary parts are assumed to be independent with

E{(x - P)T (x -P)} = 0 (38)

to attain a valid PDF. The matrix R is the covariance matrix of the vector x and has several

interesting properties. The matrix is Hermitian symmetric and positive definite. The covariance

matrix R may be estimated in several different ways. The most common method is by forming the
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outer product of several instances of the vector,

= XX*, (39)

where X contains the instances of x, X = [ x1  x2  XK ]. This method provides a consistent

estimate of R as K -* oc, and when K > N, the covariance matrix is full rank with probability

1. The estimated R, however is not positive definite. In the case where x is stationary, a positive

definite, full rank, covariance matrix can be formed as a Toeplitz matrix containing the estimated

autocorrelation sequence of x, [i] for i = -(N - 1) ... N - 1,

4[0] r[-1] ... [1 - N]

R (40)

[N - 1] q1] q0]

This is equivalent to letting

x[0] x[1] ... x[N-1] 0 .. 0

0 . .

Z = (41)
" x[0] x[1] ... x[N-1] 0

0 ... 0 x[0] x[1] ... x[N- 1]

be a N x (2N - 1) matrix in Equation 39. Now, since R is positive definite, its Cholesky decom-

position, R = L* L, provides an efficient method for creating realizations of noise whose covariance

is R. The noise sequence x whose covariance is R is constructed from L as

x = L*b

where 6 is vector whose elements are a unit variance white noise sequence.

3.2.1 Autocorrelation Sequence and Power Spectral Density. The autocorrelation se-

quence,
N-k

i[k] = : x[n]x[n+ k] k =-N + 1...0...N- 1, (42)
n=O
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is efficiently computed via the Fast Fourier Transform (FFT) as the Discrete Fourier Transform

(DFT) of the data. When FFT is zero-padded to length 2N - 1, it interpolates all 2N - 1 auto-

correlation coefficients required to form the matrix R. This Fourier transform of the data can also

be viewed a Fourier transform of samples of the Power Spectral Density (PSD) of the data,

P " N 2

P ))= .x[n]cJn (43)
n0

In this case, the data samples, x[n] n = 0... N - 1, are coefficients of a filter satisfying a

linear difference equation. In the most general form, this linear difference equation is a function of

both the input sequence and the output sequence. The sequence then satisfies an autoregressive

moving average, ARMA(o, q), difference equation,

box[n] = -bix[n- 1] ...- box[n- o] (44)

+coc[n] + cle[n - 1] ... + cqc[n - q],

where e[n] is the input sequence. This allows the PSD to be characterized as the rational function

of two polynomials. The ARMA PSD is

"'q ,. -jnw 12

p (e)= -n cCf (45)Tx~ew)= Eo =0 ~jnw 12"

A special case of this PSD occurs when the single coefficient the numerator is co. This produces

the autoregressive (AR) PSD.

3.2.2 Maximum Likelihood. Methods of efficiently estimating the parameters in these

models are of interest. If an efficient estimator exists, the Maximum Likelihood (ML) technique

is guaranteed to find this estimator. In this case, the ML estimator is unbiased and attains the

Cram6r-Rao estimation bound (CRB) (see Appendices C and D). The ML estimator has also been

shown to be asymptotically efficient and asymptotically normally distributed (for a large number

of data samples, high signal-to-noise ratio, or large number of data instances).
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In the maximum likelihood technique, the PDF of the data is evaluated at the observed data.

Then, the unknown parameters of this PDF function are optimized to find values of the parameters

which maximize the function. These values are the ML estimates of the parameters.
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IV. Modeling of Synthetic Aperture Radar Data with Exponentials

This research develops exponential estimation techniques that can be applied to data sets

such as Synthetic Aperture Radar (SAR) data. As a foundation, the relationship between the

damped exponential model and the SAR process is established here. When SAR data is collected

under certain constraints, the data can be modeled with a damped exponential model. A spatial

(k =[ kx ky ]T) and temporal frequency (w) domain analysis of SAR data collection shows that

SAR data may be used directly in exponential estimation algorithms with the addition of an inter-

polation step. In the interpolation step, the k-w domain data or phase history is transformed from

the sampling grid on which it was attained (polar for chamber data, or polar-linear for airborne

data) to a rectangular grid. This interpolation step may be skipped provided the k - w domain

data are collected on a grid that is very nearly rectangular. The error induced by this approxi-

mation is examined later. Exponential estimation techniques model SAR data directly. Thus, any

modification of the data will degrade the estimates. The use of filter windows, zero-padding, or

inappropriate means of fitting the k - w domain data to a rectangular grid significantly degrades

the performance of exponential estimation techniques. Like exponential estimation, the interpola-

tion step also involves approximating from measured data. Thus, interpolation limits estimation

accuracy. A good interpolation step or an estimation step that does not require interpolation are

of interest for accurately locating scattering centers.

4.1 SAR Data Collection

SAR data collection is modeled here in a two-dimensional perspective as shown in Figure 2.

Here airborne SAR data is collected by spotlighting a ground target location. For a linear flight

path the collection geometry involves a line (the flight path) and a non-colinear point (the target).

The data collection can be thought of as occurring entirely in the plane represented by the point

and the line (the slant plane). The target signature is collected as if the target is viewed orthogonal

to this plane. The following simplifying assumptions are made: 1) the aircraft flight path is linear,

2) the radar transmits and receives the target echo at the same point in space, and 3) the Doppler

in the signal is negligible. This model can also be expanded to include deviations from the linear

path to account for actual aircraft flight path, or a circular path (chamber data).
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Figure 2. Spotlight SAR image formation geometry

With the above assumptions, and following the k - w domain analysis of [8] [63] [64] [65]

the signal received by the radar at time t and position u, s(u, t), is the integral of the transmitted

pulse, p, and the slant-plane target reflectivity function, f(x, y), where x and y are coordinates in

the slant plane. Then

s(u,t) f ( I Y, z)P(t _ 2V(x_ xa) +(y- u- ,ya)2 )dxdydz, (46)

where c is the speed of light, (Xa, Ya) is the center of the synthetic aperture, z is the distance from

the slant plane, and the limits of integration in this and all subsequent indefinite integrals are ±oo.

If we take the Fourier transform with respect to t, defined as,

J (U, 0) = s(u, t) exp(-jwt)dt, (47)

and filter s(u, t) with the matched filter for the pulse p, the signal becomes

P*(w)S(uw)= IP(w)1 2 JJJ f(x, y, z) exp(-j2k V(x - Xa) 2 + (y - U - ya) 2)dxdydz, (48)

where k _-, and P*(w) is the response of the matched filter.
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Next, assume that the target consists of point scatterers at distinct locations in space. Then

f(x, y, z) = fn (x - x )(Y-yn)6(z -z"), (49)

where the amplitude, fn, includes target reflectivity, and a damping factor due to wave divergence

which is inversely proportional to V( xa) 2 + (y" - u - ys) 2 . The image perspective orthogonal

to the SAR collection plane includes scatterers at all depths, z, in the target, thus, the dependence

on z integrates out, giving a received signal

P*(w)S(u w) = IP(w) 2 JJ f(x, y) exp(-j2k (X- Xa)2 + (y - U - ya) 2)dxdy, (50)

where f(x, y) = - fn6(x - x,)6(y - yn).

The Fourier transform with respect to u is given by a plane wave decomposition of the

spherical wave, exp (-j2kV(X - Xa) 2 + (y - U - ya)2) , which gives the Fourier transform relation

[64]

.Fu{exp(-j2k /x2 + (y - u) 2 )} = exp(-j /4k 2 - k2x - jkuy) (51)

where the Fourier transform with respect to u, Yu, is defined as,

Y-(s(u)) = s(u) exp(-jkuu)du. (52)

Then, the k, - w spectrum of the received data is

= P()j 2 exp(j 4k- - kux. + jkluYa) f(xy)exp(-j 4k '
- k2 x -kuy)dxdy

= jP(w)j2exp(jv4k2 - k2x. + jkuy.)F(V/ - ku, ku),

where F is the Fourier transform of f. If we normalize the received signal by 1/IP(w)12, it is

simply the 2-D Fourier transform of the target reflectivity function f(x, y) with a phase shift term

to account for the target angle with respect to the aperture (squint). If samples of F(., .) were

available at uniformly spaced intervals of 4k2 - k2 and ku, f(x, y) could be recovered error-

free by this procedure [64]. The data collection geometry, however, does not permit this and
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uniformly spaced samples must be interpolated from the available data. The most common form of

interpolation is to assume that a point scatterer exists at each sample in the image, f(x, y). This

is called focused SAR.

Focused SAR for chamber data [42] involves phase shift terms to align the samples in lines

perpendicular to the k, and ky axes.. The focused SAR formulation is

f(X,1 T 1 j F(k, 0) exp(-j2kx cos 0 - j2ky sin 0) k dkdO (54)

= ~ j /f F(2k, 0) exp(j2kx(1 - cos 0) + jy(9 - 2k sin 9)) exp(-jx2k - jyO)2 dkdO.
27r --00

Fourier transforming both sides of Equation 54 shows that the collected data F(k, 9) can be simply

modulated by exp(j2kx(1 - cos 0) + jy(O - 2k sin 0)) to attain the rectangularly sampled F(k , ky).

In this method, the contribution of every measurement is added coherently with respect to each

pixel, assuming that a point scatterer exists at every pixel. This focusing, however, degrades

damped exponential signals in the data by convolving them with a point spread function, and limits

the ability to attain high resolution estimates of the exponentials. More appropriate methods of

interpolation are discussed in the following sections.

4.2 Fitting the Damped Exponential Model

The point scatterer assumption in the SAR process leads directly to the exponential model

with a damping factor, fn, to account for wave divergence. With the point scatterer assumption,

the Fourier transform of f(x, y) is the 2-D damped exponential model

F(k,ky) = fnexp(-jk.xn)exp(-jkyy,). (55)

Notice that this it equivalent to the array processing model

F(k) = Z fn exp(-jwt -jkTxn) t = 0, (56)
n

where k =[ kx ky ]T and xn=[ Xn Yn ]T at time t = 0. Thus, the array processing model for

which many parameter estimation techniques have been developed can be exploited. The difficulty

in applying this model lies in the sampling of the target reflectivity function.
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Figure 3. Target Spatial Frequency Samples

The calculation of the Fourier transform of the target reflectivity function (for the airborne

case) is error free. However, when samples are taken uniformly in u, the samples are not uniform

in k,, and when the path is circular, the samples are on a polar grid in the (k, ky) plane. The

sampling grid for the airborne and chamber cases are plotted in Figure 3. Interpolation must be

performed between the data sampling grid and the rectangular grid needed to estimate damped

exponential parameters. Several focusing methods that create SAR images do this. However, these

assume that a point scatterer exists at each pixel and thus impose a point spread function on the

data. This windowing degrades the high resolution estimates of parametric estimation methods

[30]. Inappropriate means of interpolating a SAR image such as zero-padding X-PATCH data also

destroys the performance of exponential estimation techniques [53]. Gradient methods also exist

for focusing SAR data at existing scatters, but these techniques are computationally burdensome

[15] [20]. This leaves three solutions: 1) collect data on an almost rectangular grid, 2) interpolate

the data, 3) estimate exponentials from nonuniform data.

4.2.1 Rectangular Assumption. The rectangular assumption has been used in SAR tech-

niques that incorporate exponential estimation [24] [58]. The error incurred by using the polar or

polar-rectangular grid data directly is determined by examining the deviation of these grids from

the rectangular grid (see Figure 4). For chamber data on the polar grid, the data are collected
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Figure 4. Normalized Target Spatial Frequency Samples for Chamber SAR. The small angular

and frequency increments cause the grid to be almost rectangular.

about an angle, €, from the x-axis, in a beam of 0 E [-Ob, Ob], and at frequencies k E [kmin, kmax].

The first requirement is to achieve better than Fourier resolution, thus, each sample, F(kmi, On2),

must lie in a separate cell in the rectangular grid. In Figure 4 if the first sample in a row is lower

than the last sample of an adjacent row, then resolution of a scatterer to less than a pixel (Fourier

bin) is not possible. This occurs first in Figure 4 in top row of samples when

kmin <N-2 kmax. (57)

The error in point scatterer location is given by the frequency estimation accuracy. This accuracy is

bounded by the maximum k, or ky deviation of samples within a column or row of the rectangular

grid. This error consists of two orthogonal components, ek, and ekM. Since the polar data are

circularly symmetric, 4 is arbitrary and is chosen to be 00. The error in the k. direction is greatest

at the outer ring and is

ek= kmax COS 00 - kmax COS 0
b : kmax(1 - cos Gb). (58)
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The error in the y direction is the deviation of the radial lines from parallel beam center and is

oky = kmax sin Ob - kmin sin Ob = (kmax - kmin) sin Ob . (59)

The maximum error is then the maximum of these errors. Airborne SAR is regularly sampled in

the ky direction and thus contains only the ek error term.

4.2.2 Interpolation. Since the k - w domain data resembles the sum of complex expo-

nentials the sampled data is quite smooth. Intermediate samples may be estimated from the polar

sampled data to form a rectangular grid. The simplest form of interpolation, phase-shifting the

data to a rectangular grid was described earlier. More complex methods of interpolation including

1-D and 2-D Lagrange interpolation polynomials [37] and an inverse distance method [60] are also

examined.

4.2.3 Scattering Center Focus. This section introduces a new compact model for non-

uniformly sampled 2-D exponentials. With this model a new computationally efficient method of

focusing SAR phase history data by simply applying phase shifts to the data samples is developed.

The phase history data F, the Fourier transform of the SAR image, can be written as 2-D

damped exponential data from p point scatterers and noise N

P 0 < m < M - 1

F[miM 2] sjAi 7i2 + N[ml,m 2] (60)
i=1 0 < m 2  M2 - 1,

where the Ai and -y are the complex spatial frequencies, and the si are the complex amplitudes of

the scatterers and N[ml, M 2] is additive noise. Arranging F in an M1 x M 2 matrix gives

F = GSHT + W, (61)

where

G= [g g2 ".. gp] gi = TM(Ai),

S=diag([ s, S2 ... s ]),

H=[hi h 2  ... h] hi=WTM2 (7),
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and

'1M(Z)=[ 1 Z 2  ... zM ]T.

This model assumes that the data are sampled on a rectangular grid. A reformulation of Equation

61 will expose how the rectangular grid is involved in the model and how it may be replaced with

a different grid to reflect the data collection. Consider a 2-D damped exponential with a single

exponential in each dimension. The matrix form may then be expressed as

F= siAX ®Y (62)

where

1 1 ... 1 1 2 ... M 2

2 2 ... 2 1 2 .. M 2  (63)

M1  M 1  ... 1 2 ... M2 /

and the scalar Ai taken to a matrix power results in a matrix of the same size with elements AT-1 "2

where xmlm 2 is the mim th element of X and 0 represents the element-wise Hadamard or Schur

product of two matrices. X and Y represent the coordinates of the sampling grid on which the data

is taken. To express a damped exponential which is sampled with a non-rectangular grid, simply

replace the matrices X and Y with the rectangular coordinates of that grid. For the multiple

exponential case,
P

Fr -- i  'ii  y "  (64)

Each element of F is

P

Fm, m, = zsA1'-2 7 Y"n

2=M2

S Z(siA' 7m2) A 1 2-m1 Ym 1 m2 m 2

i= 1

The damped exponential model is distorted at each pixel by the weighting factors

{i 7i l P. For conversion to a normalized polar grid these weights are
)kmh cos 0, 2- k mi  km i sin 0, 2 - 8.,2

Ai where kn, = miAk and ,,2 = m 2AO. Assume that the Ai and
-yj are undamped exponentials. Then, AT ' - 2 -m 

_M1 ,-
ni Ymlm 2 -mn2 simply applies a phase shift to each
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term in Fmnim 2 and the average phase shift for equal amplitude scatterers is

1 1 Co.-2- kml sin 0O 2 - 0 m 2

Lmim 2  - . E /-Am 1 + .'ki (65)
P =1

Thus, the focusing term in Equation 54 is clearly inappropriate since it assumes that a scattering

center exists at every pixel in the image. This focusing distorts scattering center locations.

Equation 65 is easily implemented. Estimate the Ai and 7i by picking the brightest pixels in

the image and calculating their spatial frequency. Any other 2-D frequency estimation technique

can be used. However, since only the scattering center pixel locations are required, the DFT of

F(kmi, 0m2) provides the best result. This method also provided a fast means of improving SAR

image quality when 2-D interpolation methods are too intensive. Figures 5, 6, and 7 show images

resulting from the various focusing methods used on chamber data of a C-29 aircraft and the

unfocused data (rectangular assumption).

4.2.4 1-D and 2-D Interpolation. For the 1-D Lagrange interpolation polynomial, the ky

dimension for chamber data was interpolated. An Nih order interpolation polynomial was formed

for each frequency in the polar grid. This polynomial was then evaluated at the rectangular grid

points giving the interpolated data. The most computationally intensive techniques examined were

2-D. The inverse distance method used the 2-D gradient to interpolate, and a Lagrange polynomial

interpolated the stacked columns of the 2-D data. As a basic measure of the relative merit of

each technique, an ideal image of point sources was sampled on an 'almost rectangular' polar grid,

then interpolated by each technique to a rectangular grid. Figure 8 shows the energy loss of each

interpolation method, IFIF where I1 -IF indicates the Frobenius norm. As expected the

2-D interpolation methods show less degradation.

4.3 Results

Accuracy is important in determining relative scatterer locations. When exponential tech-

niques model un-interpolated data, minimizing the energy between the model and an image does

not accurately locate the scatterers in an image. Thus, ideal data is used here to determine the per-

formance of interpolation and estimation using SAR data. Ideal SAR data of two point scatterers

was created to test the accuracy of several exponential estimation techniques with different interpo-
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Figure 5. C-29 focused with the technique developed by Mensa [42]
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Figure 6. C-29 focused with scattering center focus (64 scattering centers)
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Figure 7. Unfocused image of C-29 (rectangular assumption)
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Figure 8. Interpolation error (Chamber Data)

lation methods. Mean Square Error (MSE) for phase history data generated from Equation 60 for

two exponentials with parameters (s, A, -y) = {(O.9e - j °0 '1, 0.97e-i°027, eJ0.27) ,(ej '. 27, 1, 0.95ei 0 .4 7)}

and white Gaussian noise in an 8 x 8 snapshot were calculated using Monte Carlo simulations each

with 50 independent experiments. Several 2-D methods [10] [25] [38] [59] [2] were tested for accu-

racy without interpolation, with focusing, and with inverse imaging. These methods attain either

the Cram~r-Rao bound (CRB) for performing the estimation independently in each dimension (a

multi-trial 1-D bound or the 1-D by 1-D) or the 2-D CRB [11] [52] [66]. Figures 9 through 12 show

the Cram~r-Rao bounds and resultant MSE for the estimated frequency of one exponential. Two

solid lines are displayed; the upper is the 2-D Cram~r-Rao bound and the lower is the multi-trial

1-D bound.

Degradation away from the Cram6r-Rao bound is observed even for this small 8 x 8 snapshot.

The 'almost rectangular' assumption fails quickly. When the sample grid is greater than 32 x

32, the pixel boundary condition is violated and no estimation technique performs well with this

assumption. Each of the interpolation methods improves the performance of the algorithms in

spatial frequency estimation (scatterer location). The performance of some estimation methods,

however, is degraded and no longer attains the Cram6r-Rao bound.
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Figure 9. MSE plot for almost rectangular assumption. Techniques: 2-D iterative quadratic max-
imum likelihood (iqml2d), matrix enhancement matrix pencil (memp), 2-D method of

direction estimation (mode2d), 2-D prony (prony2d), and state space (statesp) methods
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Figure 10. MSE plot for scattering center focus. Techniques: 2-D iterative quadratic maximum
likelihood (iqml2d), matrix enhancement matrix pencil (memp), 2-D method of direc-
tion estimation (mode2d), 2-D prony (prony2d), and state space (statesp) methods
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Figure 11. MSE plot for 1-D Lagrange interpolation. Techniques: 2-D iterative quadratic max-
imum likelihood (iqml2d), matrix enhancement matrix pencil (memp), 2-D method

of direction estimation (mode2d), 2-D prony (prony2d), and state space (statesp)
methods
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Figure 12. MSE plot for 2-D inverse distance interpolation. Techniques: 2-D iterative quadratic
maximum likelihood (iqml2d), matrix enhancement matrix pencil (memp), 2-D

method of direction estimation (mode2d), 2-D prony (prony2d), and state space
(statesp) methods

37



The benefit of combining interpolation and estimation is easily seen. Not only will the inter-

polation method then be appropriate to the specific method; but the estimation technique could

also better exploit the interpolation. The non-rectangular data grid could be used directly by the

algorithm, perhaps to form a projection onto the signal subspace. Or the interpolation results such

as from the Lagrange polynomial could be used instead of the interpolated data. The interpolation

problem is not as significant for airborne data shown in Figure 3 where the k - w domain data is

evenly sampled in the k, direction, however, it remains to be seen how flight path deviations and

other real-world problems effect scatterer location.
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V. Maximum Likelihood Estimation of 1-D Exponentials in Colored Noise

5.1 Overview

Parametric techniques to estimate complex exponential signals in noise play an important

role in many signal processing applications such as direction of arrival estimation in array process-

ing, high resolution spectral estimation, and radar data modeling. An overview of these diverse

techniques is found in [66]. A key assumption in many of these techniques is that the noise spec-

trum is flat or white. When the noise is not white, more accurate estimation of the exponentials

is possible. White noise techniques do not take advantage of this fact. Additionally, peaks in the

noise spectrum may be incorrectly identified as exponentials. This work in this chapter does not

rely on the white noise assumption. Instead, exponential estimation techniques are based on the

assumption that the noise is unknown, allowing noise with spectral variation (colored noise) to

be parameterized and estimated. Because of superior statistical performance, maximum likelihood

(ML) estimators of the parameters are developed. Several approaches [5] [36] [77], [86] to find the

maximum likelihood estimate of exponentials in colored noise have been developed that model the

signal as random amplitude exponentials (the stochastic model). Most of these methods, however,

require several instances of data to form an estimate of the data covariance matrix. Stochastic

ML techniques are examined in the latter half of this chapter. This chapter is primarily concerned

with single data instances. In this case, the exponential frequencies and amplitudes can be con-

sidered unknown constants (the deterministic model). An approximation to the ML estimator for

the parameters of a colored noise deterministic model was developed in [29]. Section 4.3 shows

how the method in [29] approximates the true ML estimator derived in this chapter. This chapter

considers the estimation of the most general case of exponential, the damped exponential. The

methods developed can be easily extended to undamped exponentials with appropriate constraints.

The methods are also easily extended for multiple instances of data.

This chapter employs the traditional approach to finding the ML estimators of the exponential

parameters in the deterministic model. The log-likelihood function of the data and parameters is

determined by taking the logarithm of the probability density function of the observed data. When

a parameter can be decoupled and estimated separately, the derivative of the log-likelihood function

with respect to the parameter is determined. The derivative is then set equal to zero in order to

find the value of the parameter that maximizes the likelihood function, i.e., the ML estimator of

39



that parameter. ML estimators for the exponential amplitudes and the noise variance are found

in this manner. When these estimates are substituted back into the log-likelihood function, the

resulting compressed log-likelihood function is a nonlinear function of the exponential frequencies

and the noise parameters. Computationally efficient methods to find the parameters that maximize

this compressed log-likelihood function are developed by extending the white noise IQML method

[6] [33] [66]. Unknown colored noise techniques are developed for the cases of stationary noise,

autoregressive (AR) noise (white noise driving an all-pole filter), and autoregressive moving-average

(ARMA) noise (white noise driving a filter with poles and zeros).

This chapter is organized as follows. Section 5.2 reviews the damped exponential model and

develops the maximum likelihood estimate of the parameters of this model, develops methods for

efficient computation of the deterministic ML estimates for several colored noise models, and shows

the statistical performance of these new methods with respect to the Cram6r-Rao estimation bound.

Section 5.3 develops efficient methods of solving the stochastic maximum likelihood colored noise

problem and shows the statistical performance of these methods.

5.2 1-D Deterministic Maximum Likelihood

5.2.1 1-D Damped Exponential Model. This section describes the damped exponential

model with colored noise. Then deterministic maximum likelihood is applied to estimate the pa-

rameters of the model. The estimation of the damped exponential model for a single data instance

is examined. This case is easily modified for the multiple instance case, or the constrained to the

unit circle case by techniques described in [6] and [34].

The complex valued data samples, y[n] for n = 0 ... N - 1, of the damped exponential model

are given by
p

y[n]=EsiA- + w[n], n=0...N-1, (66)

where p is the number of exponentials, s is the amplitude of the i t h exponential, A7 = e- in+j 3in

is the i t h damped exponential with damping factor ai and exponential frequency fjl, and w[n] is a

zero-mean, stationary Gaussian noise sequence. The exponential part of the signal is considered de-

terministic with unknown parameters, {A =[ A1  A2  ... Ap ]T, S =[ S1 S2 ... sp ]T}. The

randomness of the data is due entirely to the normally distributed noise sequence, w(a 2, 7j)
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N[0, o'2Rw(q)], where 0.2 is the noise variance, and R,,(77) is the noise covariance matrix with q

unknown parameters {q=[ y71 ?72 ... 7q ]T}. When the data samples are arranged in a column

vector, Equation 66 is written with respect to the model parameters 0 = {A, s,ur2 , qj} as

y(9) = G(A)s + w(u 2 , 77), (67)

where G(A) is an N x p matrix with a Vandermonde column of each of the damped exponentials

such that

G(A) = [gi(A) g2 (A2 ) ... gp(Ap)], (68)

gi(Ai) = [1 A A ... M ]T

and s is a column vector of the exponential amplitudes. Additionally, w is complex circularly

symmetric such that E{w*w} = o2Rww(,q) and E{wTw} = 0, where (.)T indicates transpose

and (.)* indicates complex conjugate transpose. Thus the data y(9 ) is normally distributed as

N[a(A)s,0. w(7]

5.2.2 Maximum Likelihood Estimators. The maximum likelihood estimate of the param-

eters of the damped exponential and colored noise model, 0 = {fA, s,or2 , qj}, are those values of the

parameters that maximize the probability density function for the observed data sample y. For

simplicity, the explicit dependence of G and Rww on the model parameters A and 77, respectively,

is dropped from the notation. The probability density to be maximized is the circular complex

Gaussian density,

1 e- -!-(y-Gs)*R-w(y-Gs) (69)
iru2Rwwl

The logarithm is a monotonic function, thus the logarithm of the probability density is equivalently

maximized with respect to parameters in A, s, o2 and 77. This log-likelihood function for the density

in Equation 69 is

2 1
£(G,s, a2, Rww; y) = -N Iniro- - In IRwwI - W-(y - Gs)*R (y - Gs). (70)

41



The values of the parameters which maximize this function are the maximum likelihood estimates

of those parameters. The derivatives of the log-likelihood function with respect to u2 and s are

CLO N 1
_ - Gs) Rww(y - Gs), (71)

- - G*RwwGs + G*R-wy (72)a~s* WW

where the derivatives with respect to complex vectors are defined in [74]. Setting these derivatives

equal to zero gives the maximum likelihood estimators of o-2 and s,

= (y - Gs)*R(Y-1 _ Gs), (73)

=(G*RwwG)lG*Rw1y. (74)

A compressed log-likelihood function can then be constructed by substituting the ML estimates of

o.2 and s into the log-likelihood function,

L(G, Rww; y) =- L(G, s,u 2Rww; y) J,2=&2 s=A (75)

-Nln -y*(I - G(G*RG)-G*R;1)*R-(I - G(G*R G)G*R1)y - In •R-w- - N.

The remaining parameters are found by minimizing the negative of the compressed log-likelihood

function. Combining terms and ignoring constant terms the minimization is

minln Iy*(I - G(G*RG)lG*R )*R-(I - G(G*RwwG)lG*Rww)yRwwl. (76)

This expression is quickly simplified when we define a projection onto the signal space

PL,G- L*G(G*RwwG)lG*Ll (77)

where the positive definite covariance matrix is decomposed as Rww = LL, and L* (L*) - 1 .

The minimization is then

minln -y*(I - L*PL,GL*)*Rww(I - L*PL,GL-*)yRwwl
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minln iy*(L*L-* - L*PLL-*)*R L*L* - L*PL,0L-*)ytwl
A, 0

= minin ly*L- 1 (I - PL,G) LRwwL (I - PL,c)L-*yRwwlA ,0

= minin Iy*L-l(I - PL,G)L-*yRwwl (78)

since the projection (I-PL,G) is idempotent and Hermitian symmetric. Next, we define a projection

onto the space orthogonal to the signal subspace [9],

PL,A = LA(A*RwwA)-A*L*, (79)

where A*G = 0. The N-p x N matrix A is formed from the coefficients (a =[ a, a 2  ... aP ]T)

of a polynomial,

a(Ai) = ao + aAi 1 + a 2 AJ 2 +...+ apA P =0 (i l ... p), (80)

that annihilates all of the exponential columns in G

ap ap_ 1 • ao 0

A*= '.. (81)

0 ap ap_1 ..• ao

The Ai i = 1 ... p are simply the roots of the polynomial a(A). Since G is rank p, A is rank N - p,

and G and A are orthogonal, the projections PLC and PLA form a resolution of the identity where

PLC + PLA = INxN. (82)

Thus, the minimization in Equation 78 in terms of the space orthogonal to the signal space,

minln Iy*UlPL,A*yRww I

= minln Iy* A(A* RwwA) A* yRww
a'17

= minln ly*A(A*RwwA)-A*yI + In IRwwI, (83)
a,77

will give the ML estimates of the parameters a, the annihilator of the exponentials, and 7, the noise

parameters. This is a nonlinear, multidimensional optimization problem which could be solved by
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many well known methods. Notice, however, that the derivative with respect to a of the terms to be

minimized in Equation 83 does not include the second term. The ML estimator of the exponentials

does not depend on this noise related term. It is also suggested in [30] when estimating noise that

the second term in the equation simply constrains the potential solutions (noise poles) away from

the unit circle.

Performing the minimization in Equation 83 separately with respect to a, the minimization

gives

miny*A(A*RwwA)-A*y. (84)
a

Further, the inverse in Equation 84 is decomposed as (A* RwwA)-' = (A* L* LA) - 1 = (LA)+ (A*L*)+,

where (.)+ indicates the Moore-Penrose pseudoinverse, by using the pseudoinverse formula (A*L*)+ -

LA(A*L*LA) - i and (LA) + = (A*L*LA)-lA*L*. The minimization is then stated compactly and

efficiently computed as

mn y*A(LA)+ (A* L* )+A* y
a

minll(A*L*)+A*y 11 (85)

where (LA)* (LA) is the Cholesky decomposition of A* RwwA and I1.11 is the Frobenius norm. The

following section shows how R,, is attained and how the minimization in Equation 85 can be

efficiently computed.

5.2.3 Conditional Estimation of the Exponentials. This section introduces a new method

for estimation of exponentials in unknown colored noise. With this method an efficient white noise

technique is extended to unknown colored noise for several colored noise models. Several new

algorithms are then developed to perform this estimation.

The asymptotic properties of maximum likelihood are retained when Equation 84 is opti-

mized with respect to a by using an asymptotically unbiased, consistent estimate of R,,. Given a

consistent estimate of R, iw, the minimization in Equation 83 is asymptotically equivalent to

miny*A(A*RwwA)-A*y. (86)
a
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As is the case with other ML estimates, in addition to asymptotic efficiency, Equation 86 produces

good estimates for short data records as well. For the case of white noise, IQML [6] [33] [66] is a

computationally efficient, iterative method to find the parameters a in Equation 86. In IQML, the

A*y term is restated as Ya where

YP Yp-1 "'" Yo

YO1 YP+ YP Y ao
ap ap 1 . . .

aI - Ya.
VP

0 ap ap_ 1•• ao

YN-1 .ap

YN-1 ... YN-p-1

(87)

With Equation 87, the maximum likelihood minimization in Equation 86 becomes

mina*Y*(A* RwwA)-lYa. (88)
a

In IQML, A is constructed from the elements of a in a previous iteration. The quadratic form in

Equation 88 is minimized by any of a number of well-known methods. The constraint JaIIF = 1

guarantees a unique solution and the minimizing a is then the eigenvector associated with the

minimum eigenvalue of Y * (A* iww A) - 1 Y.

The basic iteration used in all the algorithms developed in this section is summarized at the

kt h iteration as
minaY* (A*lRwwAk-1)aYak. (89)

ak

The kernel Y*(A*k_iwAk_1)-iY is quickly calculated using the Cholesky decomposition of

A*kjRwwAkl in a colored noise implementation of [23]. To initialize the algorithm, A is set

equal to the identity matrix I. Thus, the first iteration whitens the data with the covariance R-,

before estimating the exponential frequencies.

To demonstrate the achievable performance of the algorithms developed in this section the

known colored noise version of IQML where/fww = Rw, in Equation 89 was implemented and is

called Colored noise IQML (CIQML).
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5.2.4 Estimation in Unknown Colored Noise. Imposing some assumptions in order to

parameterize the noise, allows development of consistent estimators of the parameters. In all the

following cases, the noise is assumed ergodic. Thus, the autocorrelation sequence of the noise is

consistently estimated [51] as

1N-7n

hw[m] = Z w[n]w[n+ mn] m = -(N - 1)...0...N- 1. (90)
n=0

The problem posed by Equation 89 is how to initiate the iteration with a good estimate of a and

R,,. Better estimates are attained when the signal and noise are estimated simultaneously. This,

however, is not always possible.

5.2.4.1 Unknown Colored Noise IQML (UCIQML). A common assumption made

is that the noise is stationary. This is the case solved in [77] for the stochastic model. The

matrix R,, is then Toeplitz, Hermitian symmetric with N parameters. These N parameters

of the autocorrelation function are based on N real-valued of the power spectral density (PSD).

Then, together with the undamped exponential signal, 4p + N + 1 real-valued parameters are to be

estimated. For the single data instance, this problem is well-posed since N complex-valued samples

of data are available. For this case, the signal and noise are estimated separately as detailed below.

White noise exponential estimators are consistent in colored noise [21]. That is asymptotically,

the residual noise, the difference between the estimate and the observed data, can not be used to

improve the exponential estimate. It is, however, the good performance of ML estimators such as

IQML for short data records, that allows us to estimate the signal and subtract it from the data

to estimate the noise sequence. From Equation 67 the noise sequence is consistently estimated (see

Appendix B) as

w = y-Gs, (91)

where G contains Vandermonde columns of exponentials estimated by IQML and s is estimated

from Equation 74 with Rww = I as

s =(G*G)-IG*y = G+y, (92)
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where (.)+ indicates the pseudoinverse. R,, is simply the Toeplitz covariance matrix

f,,[0] [1] ... [N - 1]

Rww = W~i (93)
[". . *w[1

Lww[N - 1] ,,w[1] tww[0] -

with elements consisting of the autocorrelation sequence of w, ?ww[m] for m = -(N - 1) ... N - 1.

With the estimate of a from IQML, and L from the Cholesky decomposition of R, the iteration

in Equation 89 can be computed. Additionally, since this iteration improves the estimate of a,

and consequently the estimate of s, s is reestimated at each iteration by Equation 74 and w is

reestimated by Equation 91. For a speedy implementation, the autocorrelation sequence, ,w[m]

for m = -(N- 1) ... N - 1, is quickly computed with the Fast Fourier Transform (FFT) and

estimates are quickly computed with the pseudoinverse computed by the QR decomposition. For

example Equation 74 becomes

§ =((L*)+G)+(L*)+y. (94)

Just as in IQML of the iteration in Equation 89 is not guaranteed to converge, however, after

a small number of iterations (less than ten) estimates are significantly improved. One key element

of sustaining the iteration in Equation 89 is maintaining the positive definiteness of the kernel

(A*RwwA) - i. Thus, only positive definite estimates of the noise covariance, R, are used in the

methods developed in this dissertation.

5.2.4.2 The UCIQML Algorithm. The proceeding algorithm will be called Unknown

Colored noise IQML (UCIQML) and is summarized as follows:

Step 1. Estimate the signal Gs with IQML. Set A0 = I and R,, = I in Equation 89. Iterate

several times to attain the roots of a, Ai for i = 1 ... p. Form the matrix G from the Ai. Then

estimate s as

s -G+y. (95)
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Step 2. Estimate the noise sequence w as

w = y-Gs. (96)

Step 3. Estimate the autocorrelation sequence of the noise rww[m] for m = -(N-1) ... N-1.

Form Rww and its Cholesky decomposition Rww = L*L.

Step 4. Estimate new Ai for i = 1 ... p. Form Ak-1 from the last estimate of a, ak_ 1 , and

iterate once
mi~n II(A k- I i*) + Y a k 

112" (97)

akF

Step 5. Re-estimate s as

=((L*)+G)+(L*)+y. (98)

Step 6. Repeat Step 2 - 5 for several iterations, or until estimates do not significantly change.

5.2.4.3 Other Noise Models. In addition to stationarity, the noise may be further

parameterized as the stationary output of a filter driven by a white noise sequence. Since the

available data is limited, an appropriate low-order model must be chosen to limit the number of

parameters to be estimated. The principle of parsimony [7] suggests that to better estimate the

signal, the noise be modeled with as few parameters as possible.

Two well-known models that provide adjustable low-order noise models are the autoregressive

(AR) and autoregressive moving-average (ARMA) filter models, with Power Spectral Densities

(PSDs) being rational functions of two polynomials, C(z)/B(z). In the next sections, specific

solutions for AR and ARMA noise processes are explored. It is emphasized that the basic colored

noise technique exploited in this research is very general and any appropriate low-order noise model

may be used to estimate R,, for Equation 89.

5.2.4.4 Autoregressive Unknown Colored Noise IQML (ARUCIQML). The follow-

ing solution for the unknown colored noise problem assumes an AR model for the noise (i.e. the

noise contains only poles and no zeros; the single filter coefficient of the numerator polynomial is

one). If the noise sequence is the stationary output of a qth order Infinite Impulse Response (IIR)
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filter, then the noise satisfies an autoregressive (AR) difference equation

bow[n] = -blw[n - 1] ...- bqw[n - q] + e[n] (99)

where e[n] is a white noise sequence. The AR PSD is

P. (el ') = q ' be-jnwj2 (100)IEno 0lO0)

As stated earlier, the first problem posed by the minimization in Equation 89 is how to

attain a good initial estimate of R,, and A so that the iteration will converge to the true A.

It is well known that either AR noise poles or exponential frequencies may be estimated with the

covariance method [29]. Additionally, IQML provides consistent ML estimates of both exponentials

and AR processes [66] (see Appendix B). The only difference in modeling an AR noise sequence and

exponentials is the input to the AR filter that produces them, white noise or an impulse. Figure

13 shows how the model of damped exponentials in colored noise includes both these cases. If we

assume that the colored noise can be described with an autoregressive (AR), or all-pole filter model

with known model order q, then the exponentials and noise poles may be estimated simultaneously

by estimating an order p + q AR polynomial with the covariance method or the IQML method.

5.2.4.5 Approximating the Maximum Likelihood Optimization. To see why this is

true, notice that Equation 84 may be generalized as

miny*AWA*y, (101)

where W is positive definite. A generalization to any positive definite matrix W is possible because

the solution space for the minimization problem is defined by A*G = 0 (the null space A*). The

matrix AWA* has the same null space. Next, decompose the inverse covariance matrix as in [30]

and use the fact that R-1 is centro-symmetric (Hermitian symmetric and symmetric about the

anti-diagonal) [45] to produce

R = BP-B* = (BP-1/2)(P-1 / 2B*) = L- 1 L - *, (102)

49



6[n]
impulse

I
k=1-Akz- 1  A(z)

e[n] C Z ------- yn
white noise B(z) Z yn

Figure 13. Model for exponentials in ARMA colored noise

where B* is the N - q x N matrix

1 bi ... bq 0

B* 1 .= . (103)1b q- 1  .. q-1
bq-1

0

The bi are the AR polynomial coefficients, b = [ 1 b1  ... bq ], the b for i = 1 ... k are the kth

order AR coefficients from the Levinson recursion [30] and

P = diag([ 11 ... 1 N-q pq " PO])
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where the Pk for k = 1 ... q are the prediction errors calculated at the kth iteration of the Levinson

algorithm. The following approximations of Equation 84 asymptotically produce the same result

and approximate the maximum likelihood solution,

miny*A(A* RwwA)-A*y
A

miny*A(A*(BP-lB*)-A)-A*y (104)
A

- miny*A(A*(KK*)+A)-lA*y (q : p) (105)
A

miny*AK(A*A)-lK*A*y (106)
A(

_ miny*AKK*A*y. (107)
A

In Equation 104, except for the last q rows of P- 1/ 2B*, both B* and A* perform a convolution

on the data. In fact since Pk+1 _ Pk, the matrix KK* is a good rank N - q approximation of

BP-1B*. The operations performed on the data vector y are now clearly seen as a convolution

(multiplication by A*), followed by a deconvolution (A*)+, followed by a convolution K*. If the

order of these operations is interchanged, then the matrices K* and (A*)+ may be replaced by the

appropriately sized matrices K* and (A*)+ with O(p/N) error (see Appendix A) and for p < N,

Equation 106 results. This is the ITEMS minimization [31] (modified for damped exponentials)

with kth iteration

mina y(A _ jAk_)-1k*Y*ak. (108)
ak

Equation 107 indicates that the covariance method will also provide a consistent estimate of the

exponentials and noise poles. Rewriting the minimization in terms of the polynomials whose coef-

ficients are contained in a and b gives

mi IY(a*b)F (109)
a*b(19

where * indicates the convolution of the polynomial coefficients. The roots of the polynomial whose

coefficients are a*b are the exponentials, Ai for i = 1 ... p, and the noise poles, (i for i = 1 ... q.

The difficulty is choosing which roots are exponentials and which roots are noise. The amplitude
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of exponentials is estimated from Equation 74 with R,, = I as

s =(H*H)-lH*y = H+y. (110)

If H contains a Vandermonde column for each root of the order p + q AR polynomial, then for

high signal-to-noise ratios (SNRs) the p roots with the largest amplitude will be the exponentials.

Equation 110 provides a good indicator of signal or noise down to near zero SNR.

5.2.4.6 Choosing Signal and Noise poles. To see why picking roots with the largest

amplitude is a reasonable estimate of the signal, consider the maximum likelihood minimization

for white noise

min 1ly* (I - G(G*G)-lG*) y (111)
AkN

= maxly*G(G*G)-IG*y (112)
xAN

= max y*G(G*G)-lG*G(G*Gl-'G*y. (113)
AN

Substituting back in the ML estimate of the amplitude gives the optimization

max I s*G*Gs. (114)
A N

Thus the ML estimate maximizes the energy of the estimated signal. Now, consider the problem of

choosing the signal and noise poles. The function in Equation 114 could be evaluated at all (Pr)

possible signals pole combinations and the combination that produced the maximum value chosen.

A similar technique could also be employed with the colored noise ML optimization. However,

both these methods are computationally intractable for large p or q. Thus, a suboptimal approach

is needed. Such an approximation to Equation 114 attained by ignoring the cross terms between

signals is
1 P

max E 4 g7gisi, (115)
i=1

or pick the p poles with the highest energy. For undamped exponentials g*g = N, and Equation

115 reduces to
p

maxE ssi, (116)

52



or choose the poles with the largest amplitude. For damped exponentials the appropriate energy

measure is
1 P

max E IAiIls~si. (117)
ANi=I

Note that while these approaches are suboptimal, they still solve an optimization problem in their

own right; the maximum likelihood estimate of a single exponential signal. Thus, at low SNR when

the poles of a signal consisting of closely spaces exponentials have merged this technique provides

better estimates of the merged pole.

Better performance at low SNR can also be attained with an initial estimate of the p + q

exponentials and noise poles from IQML as

minI1*A*\+V(

a.b K*A*)Va*b) F (118)

Equation 109 also suggests that a comparable performance will be attained by increasing the

model order of IQML (IQML2) to model both signal poles and noise poles, in effect, estimating an

AR(p + q) process. Results show that this is true, however, picking q poles as noise and whitening

the data with Equation 89 still achieves better performance. That is, whitening the noise poles

over all frequencies with Equation 89 provides better performance than estimating (eliminating

from the signal) the subspace of the noise's peak frequencies by estimating an AR(p + q) process.

5.2.4.7 The ARUCIQML Algorithm. This algorithm will be called Autoregressive

Unknown Colored noise IQML (ARUCIQML) and is summarized as follows:

Step 1. Estimate p exponentials and q noise poles with IQML. Estimate 7Y for i = 1 .. .p+ q

and form the N x p + q matrix H.

Step 2. Determine which 7i are exponentials and which are noise poles. Estimate s as

s =H+y. (119)

For high signal-to-noise ratios (SNRs) the p exponentials of H with the largest amplitudes are the

signal exponentials, Ai for i = 1 ... p; the remaining -y are the noise poles, (i for i = 1 ... q.

Step 3. Construct A and L. Form the coefficients of a(A) and A from the Ai for i = 1 ... p.

Form the coefficients of b(C) = bo+biC+. . .+bq q from the (i for i = 1 ... q. Form the autocorrelation

53



sequence of the noise from the AR PSD. Then form Rww and its Cholesky decomposition R =

L*L.

Step 4. Estimate new ) for i = 1 ... p. Iterate once

min 11(A*k l L*)+ Yak 112 (120)

Step 5. Form A from the last estimate of a and repeat Step 4 for several iterations, or until

estimates do not significantly change.

Step 6. Estimate s as

= ((L*)+G)+(L*)+y. (121)

5.2.4.8 Autoregressive Moving Average Colored Noise IQML (ARMAIQML). The

following solution for the unknown colored noise problem assumes an ARMA model for the noise

(i.e. the noise contains poles and zeros). If the noise sequence is the stationary output of a filter

with an equal number of poles and zeros then the noise satisfies an autoregressive moving average

(ARMA) difference equation

bow[n] = -blw[n - 1] ...- bqw[n - q] (122)

+coe[n] + cie[n - 1] ... + cqe[n - q],

where c[n] is a white noise sequence. The ARMA PSD is

Iq =0 Ce-jnw 2

Pww(ejw) = .2 n0 (123)

Damped exponentials are a deterministic ARMA process. Thus, IQML is again used to

simultaneously estimate the exponentials and the noise poles. The exponentials and noise poles are

estimated and selected by amplitude as in ARUCIQML. ARUCIQML also estimates the exponential

and noise pole amplitudes from Equation 92. However, since the noise amplitudes are stochastic, the

numerator coefficients of the ARMA polynomial can not be determined from the noise amplitudes.

Instead, the signal and noise are separated as in UCIQML. The noise is filtered (using the noise
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poles estimated with IQML) to attain the MA part (numerator) of the noise estimate implied by

the IQML pole estimate.

As in ARUCIQML, IQML provides consistent estimates of the exponentials and noise poles

and approximates the maximum likelihood solution (see Appendix B). Similarly to [36] the ARMA

covariance matrix is constructed as

RARMA = C*RARC (124)

where RAR is an N + p x N + p AR covariance matrix and C is the N + p x N convolution matrix

of the MA (numerator) polynomial,

1 0

1el

C =(125)
Cp C 1

0 Cp

As in the AR case, the N - p x N - p lower triangular Toeplitz matrix (/)+ used to approximate

R = (f! k*)-1 commutes with C and A (see Appendix A and B). The ARMA optimization can

thus be stated as miny*AkWk*A*y with a positive definite weighting matrix W and IQML will

consistently estimate the exponentials and noise poles.

First for the ARMA noise, the noise and signal are estimated as in ARUCIQML. Then, the

signal and noise are separated as in UCIQML as

w = y-Gs (126)

where G contains Vandermonde columns of the exponentials estimated by ARUCIQML and s is

estimated by

s =G+y. (127)
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The noise poles were also estimated and the AR covariance matrix RAR = L*RLAR is constructed

from these. The estimated noise sequence w is then whitened to give the estimated MA noise

sequence

WMA = (LAR)+w. (128)

The autocorrelation sequence of the MA coefficients is then the central 2q + 1 values of the autocor-

relation sequence of WMA. The ARMA covariance matrix Rww is constructed from autocorrelation

sequence, the inverse Fourier transform of the ARMA PSD

pww(eJw) - Zm =-q rM A e -w(

IE =o bnei I

With the estimate of a from the signal poles and L from the Cholesky decomposition of Rww,

the iteration in Equation 89 is computed. Again, since this iteration improves the estimate of a,

and consequently the estimate of s, s is reestimated at each iteration by Equation 127, and w is

reestimated by Equation 126 giving a new MA autocorrelation sequence rMA and noise covariance

matrix Rww.

5.2.4.9 The ARMAIQML Algorithm. This algorithm will be called Autoregressive

Moving Average colored noise IQML (ARMAIQML) and is summarized as follows:

Step 1. Estimate p exponentials and q noise poles with IQML. Estimate -ti for i = 1 ... p + q

and form the N x p + q matrix H.

Step 2. Determine which 'yi are exponentials and which -y are noise poles. Estimate s as

s =H+Y. (130)

For high signal-to-noise ratios (SNRs) the p exponentials of H with the largest amplitudes are the

signal exponentials, Ai for i = 1 ... p. The remaining -y are the noise poles, (i for i = 1 ... q.

Step 3. Construct G, A, and LAR. Form the coefficients of a(A), and A from the Ai for

i = 1 ... p. Form the coefficients of b(() = bo + b1( + ... + b9(q from the (i for i = 1 ... q. Form the

autocorrelation sequence of the AR part of the noise from the AR PSD. Form the Toeplitz matrix

RAR and its Cholesky decomposition RAR = LARLAR.
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Step 4. Estimate the MA part of the noise sequence WMA. Filter out the AR part of the noise

by

WMA = (L*R)+(y-Gs). (131)

Step 5. Estimate the autocorrelation sequence of the MA part of the noise rMA[m] for m =

-(N - 1) ... N- 1.

Step 6. Estimate the autocorrelation sequence of the noise rww[m] for

m = -(N - 1) ... N - 1. Retain the central 2q + 1 values of the rMA autocorrelation sequence, then

calculate the autocorrelation sequence of the noise r~w from the Fourier transform of the ARMA

PSD in Equation 129. Form Rw and its Cholesky decomposition Rww = L*L.

Step 7. Estimate new Ai for i = 1 ... p. Form A from the last estimate of a and iterate once

min 1 (A'_IL*)+Yak 112 (132)
ak

Step 8. Estimate s as

=((L*)+G)+(L*)+y. (133)

Step 9. Repeat Step 4 - 8 for several iterations, or until estimates do not significantly change.

5.2.5 Results. To test the algorithms in previous section, instances of two exponentials

in AR and ARMA colored noise were created. For the first example, the exponential parameters

were (s, A)i ={(1, 0.95ejo'6r)i, (1, 0.95ejo' 2"r) 2 }. The noise was a two pole process with poles ( =

{0.95e °
0

2
r

, 0.95e0. 4,r}. The PSD of the signal and noise are shown in Figure 14. The Mean Square

Error (MSE) in estimating the exponentials is shown in Figure 15. The MSE's were calculated for

length N = 32 snapshots using Monte Carlo simulations each with 200 independent experiments.

All of the algorithms were run for ten iterations. The straight solid line in the figures is the

Cram6r-Rao estimation Bound (CRB) which is described in Appendices C and D.

IQML, IQML with double the known model order (IQML2), UCIQML and CIQML were

tested with this data. The results show that CIQML follows the CRB. The MSE of UCIQML

will approached the CRB asymptotically as the length of the sample approaches infinity. For the
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Figure 14. PSD of two exponentials well separated in frequency from AR noise poles (Example 1)
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Figure 15. MSE plot for one of two exponentials separated from AR noise (Deterministic ML, Ex-
ample 1). Techniques: iterative quadratic maximum likelihood (iqml), iqml with dou-
ble the model order (iqml2), known colored noise iqml (ciqml), unknown colored noise
iqml (uciqml), autoregressive uciqml (aruciqml), and iterative estimation of mixed
spectra (items)
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Figure 16. PSD of two exponentials centered near in AR noise poles (Example 2)

length 32 sample, it is quite close to the CRB. IQML attains the CRB for white noise (i.e. the

CRB for colored noise is higher than the CRB for white noise). The performance of both IQML

and UCIQML (because it is based on the signal estimates of IQML) breaks down at a moderate

signal-to-noise ratio (30 dB). The performance of IQML2 does not experience this break-down until

much lower SNR. This suggests the techniques exploited in ARUCIQML. The initial estimate for

ARUCIQML is attained in the same manner as the IQML2 estimate, which estimates both the

signal poles and the noise poles with its increased model order. The ARUCIQML algorithm and

the approximate ML method ITEMS [29] [31] described by Equation 106 were also tested on this

first example. The exponentials and noise poles were estimated simultaneously with these two

algorithms with good results. Their performance matches that of CIQML and tracks the CRB.

For the second AR example, the exponential parameters were changed to (s, A) ={(1, 0.95ei 0 22w),

(1, 0.95e 0
.
44

r)}. These exponentials are slightly offset in frequency from the noise poles at C =

(0.95eJ 0
.
2

n, 0.95e047r) and provide a more difficult estimation problem. The PSD of this example

is shown in Figure 16. Results are shown in Figure 17. In this example the increased model order

of IQML2 was detrimental. IQML2 performance is nonexistent and ITEMS performance is poor.

Using ARUCIQML in both AR examples results in improved or comparable performance with

IQML.
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Figure 17. MSE plot for one of two exponentials centered in AR noise (Deterministic ML, Exam-
ple 2). Techniques: iterative quadratic maximum likelihood (iqml), iqml with double
the model order (iqml2), known colored noise iqml (ciqml), unknown colored noise
iqml (uciqml), autoregressive uciqml (aruciqml), and iterative estimation of mixed
spectra (items)

For the ARMA example, the exponential parameters were (s, A)i ={(1, 0.95ei 0 .6)i ,(1, 0.95ejO.62,r) 2 }.

The noise was a two-pole/two-zero process with poles C {0.95ei 0
.
2

7, 0.95e 0.47} and zeros p =

{0.95ej °' 15 r, 0.95ei0 717}. The PSD of the signal and noise is shown in Figure 18. The Mean Square

Error (MSE) in estimating the exponentials is shown in Figure 19.

Again, CIQML follows the CRB, and UCIQML and ARMAIQML will approach the CRB

asymptotically. IQML attains the CRB for white noise. The performance of both IQML and

UCIQML (because it is based on the signal estimates of IQML) breaks down at a moderate signal-to-

noise ratio (30 dB). The performance (MSE - 1 ) of the unknown colored noise algorithms (UCIQML,

ARUCIQML, and ARMAIQML) is bounded above by the performance of CIQML and below by

IQML applied to the colored noise. As expected when the model used better matches the test case

(ARMAIQML vs. ARUCIQML, ARUCIQML vs. UCIQML), the performance is better. The key

benefit of UCIQML, ARUCIQML, and ARMAIQML is that the better (colored noise) CRB that

is attained. All the algorithms derived in this section also demonstrate good performance in white

noise with exponentials (s, A)i ={(1, 0.95ej' 6')o,(1, 0.95eJ0 62 )2} as shown in Figure 20.
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Figure 18. PSD of two exponentials separated from ARMA noise (Example 3)
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Figure 19. MSE plot for one of two exponentials in ARMA noise (Examples 3). Techniques: itera-
tive quadratic maximum likelihood (iqml), known colored noise iqml (ciqml), unknown
colored noise iqml (uciqml), autoregressive uciqml (aruciqml), and autoregressive mov-
ing average uciqml (armaiqml)
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Figure 20. MSE plot one of two exponentials in white noise (Example 4). Techniques: iterative
quadratic maximum likelihood (iqml), unknown colored noise iqml (uciqml), autore-
gressive uciqml (aruciqml), and autoregressive moving average uciqml (armaiqml)

5.2.6 Conclusions. Computationally efficient maximum likelihood estimators for colored

noise have been developed. These estimators retain all the asymptotic properties of maximum

likelihood and produce good results for short data records as well. The ARUCIQML algorithm

attains the CRB and is efficient for short data records. The UCIQML, an Nth order MA colored

noise estimator, and ARMAIQML algorithms do not attain the CRB. This is expected since the

colored noise estimates are based on finite order sample covariance estimates which are not efficient

for MA and ARMA processes [71].

5.3 Stochastic Maximum Likelihood

This section introduces a new technique to estimate exponentials in colored noise based on

stochastic maximum likelihood. This section simplifies the solution for the colored noise stochastic

model given in [86] from a global search to an iterative quadratic solution. This simplification uses

the projection onto the orthogonal subspace developed in the previous section and the methodology

of the white noise stochastic ML method, Method of Direction Estimation (MODE) [69].

The results of [86] allow known and unknown colored noise IQML-like algorithms for the

maximum likelihood solution of the stochastic model to be derived. The data in the stochastic
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model is distributed as

y - N(O, Ryy)

Ryy = GRSSG* + o-2 Rww (134)

The general result of [86] finds the maximum likelihood estimate of the unknown parameters

with the minimization with respect to the parameters G and Rww of

£(G, Rww; y) = Mln IPi yyP* + &2(l - P)Rwwl + MN (135)

where P =L* PL, GL* and &2 = (N - p)tr(I - P)RyyRww. Observe the term inside the deter-

minate is the estimated covariance matrix separated into signal subspace and noise subspace terms.

In terms of the deterministic signal, y = Gs + aL*c and Riyy = yy* the minimization is

minln I(Gs + o-G(G*RwG)-G*L-lc)(Gs + oG(G*RwlwG)-lG*L-lc)* +& 82(I - P)Rwwl. (136)
L,G

When the signal and noise are uncorrelated this gives

minln IGss*G* + o2 G(G*Rw G) 1 G*L cc*L*G(G*RwwG ) lG* + &2(1 - P)Rwwl. (137)
L,G

Then taking the expected value, E{.}, of Equation 137 gives

minln I(Gss*G* +- a 2PRww + &2(I - P)Rww. (138)
L,G

The first term in this minimization, the signal, is fixed, thus, the minimization is satisfied when o-2

is minimized. Observe that a 2 is still minimized when the orthogonal projection PLA is used in

place of PG,A. Replacing PG,A with PL,A in Equation 135 and some simplification gives

minIn IL*PLAL-*fRyy(L*PL,AL-*)* + &2(1 - L*PLAL-*)Rwwl
L,A

= minIn IRwwA(A* RwwA)- A* JyyA(A* RwwA)-lA* Rww
L,A

+&2(1 - RwwA(A*RwwA)IA*)RwwI

= mi n IRwwA(A* RwA)- A* ! yyA(A* RwwA)- A* Rww
L,A

-&2RwwA(A* RwwA)- A* RwwA(A* RwwA)- A*Rww + &2Rwwl
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= minln JRwA(A*RwwA)-IA*(Ryy - 6-2 Rww)A(A*RwwA)-A*Rww + &2 RwI
L,A

= minIn JRwA(A*RwA)-l A*(yy - 2R+w)A(A*R A)-A* + n-21( + In +nww)
L,A

= minIn jA(A*RwwA)-A A*(Ry yy - 6- 2Rw)A) + 6-211 + In IRl ((AB1+3I9)BA+Il)
L,A

= minlIn I (A* L*) +A* (Ryy _ &-2 Rw)A(LA)+ + 6-21j + In JRwl (139)
L,A

Notice again that the second term in Equation 139 does not depend on A. Thus this term can be

eliminated from the minimization to find A. Since the logarithm is a monotonic function the mini-

mization in Equation 139 is equivalent to one with the logarithm removed. Then, for a consistent

estimate of Rww, i, the minimization is

min I(A*L*)+A*(Ryy - 62 Rww)A(LA)+ + 6"211 (140)
L,A

Note the quantity in the determinant is positive semidefinite. Then, the inequality

IRIl< (-r)N (141)

for R positive semidefinite [41] indicates that the minimization in Equation 140 is equivalent to

mintr ((A*L*)+A* (fRyy _ &2R,,)A(LA)+ + 6.21) (142)L,A

For white noise this is equivalent to the weighted subspace minimization given in [50]. It is shown

in [71] that the stochastic ML model may be applied with consistency to deterministic data. In the

form of Equation 142, the effect of the minimization on the signal, y = Gs + OL*E, is to minimize

E{tr ((A*L*)+A*(Ryy - 6 2Rw)A(LA)+ + 621)}

= E{tr ((A*L*)+A*Gss*G*A(LA)+ + U2(A*L*)+A*L*cc*LA(LA)+ - 6.2I + 6.2j)1

= tr (02 (A*L*)+A*L*E{cc*}LA(LA)+)

= 0r
2
tr(PL,A)

= (N-p) 2  (143)

64



where fww = yy*, tr(AB) = tr(BA), and A*G = 0. Thus, the variance of the noise is minimized.

Observe that the difference from the data model is the way in which the effect of the noise on

the exponential signal estimation (choice of minimizing A) is minimized. In the deterministic

model, a whitening filter minimizes the noise. In the stochastic model, an estimate of the noise is

subtracted from the signal prior to estimation of the minimizing A. This is readily accomplished on

the whitened data in an extension of the white noise technique MODE [69] to known colored noise

which will be called Colored noise MODE (CMODE). MODE is described in Appendix E. Including

our previously canceled L*L-* and L-1L, and taking the principal components (pc) of the whitened

data (the eigenvectors associated with the p largest eigenvalues) gives the minimization

mintr ((A*L*)+A*L*pc {L-*(Ryy - &2 Rww)L- 1 } LA(LA)+) (144)

or

mintr (A(A*ftwwA)-A*L*pc {L-*(kyy - f2kRww)L-1} L) (145)

where &2 may be quickly estimated as the average of the remaining N -p eigenvalues. Notice, that

since &2 is now considered any consistent estimate of a-2 , and because of the additive property of the

trace, the final &21 term in Equation 142 may be dropped. This, in turn, implies that any weighting

of &21 may be subtracted in Equation 145 so long as the matrix R in Equation 141 remains positive

semidefinite. A discussion of the optimum weighting is included in the next section.

Equation 145 is minimized in a similar fashion to IQML by creating a data matrix Y in

Equation 87 to form the minimization of a quadratic in a. Here, also, is the first compromise

necessary for a single data instance. The full covariance matrix Ryy is not available; yy* is rank 1

and a principal components analysis is meaningless. A smaller (N -p x N -p) rank-p+ 1 covariance

matrix Ryy =- YY* may be estimated from overlapping segments of the data with Y from Equation

87. In 1-D this only increases the number of samples required. In 2-D estimation this will force a

compromise between true 2-D exponential estimation and 1-D by 1-D estimation.

5.3.1 Estimation in Unknown, AR and ARMA Colored noise. Stochastic algorithms

corresponding to each of the deterministic algorithms were developed and tested on the same set

of examples as in Section 4.4. The stochastic algorithms are built around the iteration in Equation

145. An eigendecomposition of the whitened outer product of the data matrix in Equation 87,
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(L*)+ RL+ = (L*)+YY* L+ = VDV*, gives p signal eigenvectors L* Vp W 112 where V contains the

p columns of V associated with the p largest eigenvalues in D, and W is the optimal weighting of the

eigenvectors [71] (see Appendix E). The p signal eigenvectors are used in place of the data matrix of

the colored noise version of IQML. The best performing and most computationally efficient method

of finding principal components involved taking the SVD of (L*)+Y . This quickly identifies the

eigenvectors V and the square roots of the eigenvalues in D. Other aspects of the algorithms (how

the noise covariance is consistently estimated) are the same as the deterministic versions.

The optimum weight matrix W for a large number of data instances is [50]

W = (D - 6 2 I)2 D- 1 = (D - &2I)(I - "2 D- 1 ). (146)

The effect of this weighting matrix can be understood in terms of the inequality in Equation 141

which is derived from the dominance of the arithmetic mean of the positive and zero eigenvalues

of the matrix R in Equation 141 over the geometric mean of these eigenvalues. This inequality

becomes an equality when the eigenvalues are equal. Then, as 8&2I -* D (low SNR) the weighting

term in Equation 146 goes to zero and the approximation of using the trace in Equation 142 becomes

more accurate.

The same two mode test cases as in Section 4.4 were run with MODE, and its known colored

noise (CMODE) and unknown colored noise variants (UCMODE, ARUCMODE, ARMAMODE).

The results are shown in Figures 21 through 24. When multiple instances of the data are avail-

able and when the exponentials in the signals are correlated these methods can show improved

performance over the IQML based methods [71]. For the single data instance, however, these al-

gorithms do not in general outperform the IQML based methods. In some instances, the MODE

based algorithms do show better performance (UCMODE). As in most instances of the determin-

istic algorithms, the unknown noise versions of the algorithms very closely approach the known

colored noise version's performance. The MODE based algorithms, however, all fall slightly below

the CRB. This is due the fact that an extra p samples are used to effectively estimate the signal

subspace, thus the optimization in Equation 145 is based on a set of length N - p data samples

while the deterministic optimization is performed on length N data sample.
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Figure 21. MSE plot for two exponentials widely separated from AR noise (Stochastic ML, Ex-

ample 1). Techniques: method of direction estimation (mode), known colored noise

mode (cmode), unknown colored noise mode (ucmode), and autoregressive ucmode

(arucmode)
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Figure 22. MSE plot for two exponentials centered in AR noise (Stochastic ML, Example
2). Techniques: method of direction estimation (mode), known colored noise
mode (cmode), unknown colored noise mode (ucmode), and autoregressive ucmode
(arucmode)
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Figure 23. MSE plot for two exponentials in ARMA noise (Stochastic ML, Example 3). Tech-
niques: method of direction estimation (mode), known colored noise mode (cmode),

unknown colored noise mode (ucmode), autoregressive uemode (arucmode), and au-
toregressive moving average uemode (armamode)
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Figure 24. MSE plot for two exponentials in white noise (Stochastic ML, Example 4). Tech-
niques: method of direction estimation (mode), unknown colored noise mode (uc-
mode), autoregressive ucmode (arucmode), and autoregressive moving average ucmode
(armamode)
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VI. Estimation of 2-D Exponentials in Colored Noise

6.1 Overview

This chapter develops extensions to two dimensions of the one-dimensional maximum likeli-

hood exponential estimation techniques developed in the previous chapter. This extension is not

completely straight forward because of the unique nature of two-dimensional (2-D) signals. Two-

dimensional discrete time signal processing theory has been well developed [14], and many of the

characteristics follow directly from one-dimensional discrete time signal processing. However, one

dimensional spectral estimation techniques that involve polynomial rooting fail to be directly ap-

plicable due to the absence of a fundamental theorem of algebra in two dimensions. The roots of

a polynomial in two dimensions are not unique and efficient root finding techniques do not exist.

This fact has lead to the development of several novel methods of 2-D spectral estimation. This

section briefly reviews the 2-D techniques that have been developed in order to understand how

the two-dimensional maximum likelihood solution effectively exploits both dimensions. First, to

discuss the 2-D techniques, the following signal model of a single instance of data with exponentials

in two dimensions is used. Two-dimensional damped exponential data, y, in noise, n, containing p

exponentials may be described as

P
y[m 1 ,m 2]= si A" 7Q1 +n[mi,m 2] 0< M M -1 0 < M 2  M2 -1 (147)

i=1

where the Ai and 7i are the complex exponential frequencies and the si are the complex amplitudes

of the exponentials. Arranging the data y in an M, x M2 matrix Y gives

Y = GSHT + N, (148)

where

G= [ g, g2 .. g ] gi = T'Ml(Ai), (149)

S = diag([ s, S2 ... sp ]) (150)

H = [ hi h 2  ... hP ] hi = TM2 (Qyi), (151)

and

4M(Z)=[1 z Z2  ... zM ]T, (152)
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N is a random field of noise, and S is diagonal. Another less restrictive model of the data is also

possible if all the elements of the matrix S are populated. In this case, the model is separable

and 1-D techniques can be efficiently applied in each dimension. In this case, exponentials with

any combination of spatial frequencies in each dimension are possible (a 1-D by 1-D model). This

model then requires a strict pairing of spatial frequencies if two-dimensional exponentials at unique

frequencies are present in the data. Conversely, the restricted (full 2-D) model where S is diagonal

does not require pairing since its solutioi is unique.

6.2 Two-Dimensional Techniques

Several two-dimensional exponential estimation techniques are introduced here that follow a

1-D by 1-D, or a 2-D model. A detailed analysis of the performance of these techniques is contained

in [52]. The techniques discussed here are those that do not involve search of the spatial frequency

plane, but instead find the spectral peaks through some more efficient means.

The first technique from [2] is developed from a state space representation of the data and

uses a singular value decomposition of the matrix

Y = UZV*

where U and V are unitary matrixes spanning the column space and row space of Y respectively,

and E is a diagonal matrix of the singular values of Y. The matrices G, S, and H are estimated

from U, E,and V, respectively. The spatial frequencies are estimated separately in each dimension

from U and V by exploiting the rotational invariance of exponentials [57]. As in all the remaining

techniques requiring pairing, the frequencies are efficiently paired [52] by row and column of the p

largest amplitudes in the least squares estimate of the matrix

S = G+Y(HT)+. (153)

This method attains the multi-trial 1-D CRB given in [10].

The second technique, Matrix Enhanced Matrix Pencil (MEMP) from [25] also exploits ro-

tational invariance to find the spatial frequencies. This method also requires pairing, however, it

efficiently estimates the 2-D exponentials of the restricted 2-D model by simultaneously using the
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data from all the columns or rows, and attains the 2-D CRB [10]. In MEMP, the frequencies are

estimated from a block Hankel matrix consisting of blocks which are the Hankel data matrix of the

1-D covariance method [30] for each column of data. This block matrix is in effect an estimate of

the Cholesky decomposition of the full M1M 2 x M1 M 2 covariance matrix of the data, which has

been ordered columnwise into one vector. However, since only one data instance is available and

some samples are used up to make the matrix rank p, the block matrix is not the full size 2-D

covariance matrix.

The 2D Prony method [59] is an extension of the 1-D Prony technique [30]. The covariance

method is applied simultaneously to all the columns (rows) of data, in effect, considering each

column (row) as a new data instance. This method uses the one-dimensional technique of over-

modeling (estimating more frequencies than the data contains) and selects the two-dimensional

frequency combinations that produce the highest energy signal.

The 2D MODE technique [38] estimates the full 2-D covariance matrix from the outer product

of a column-ordered vector of the data (a rank one estimate for the single data instance). Separately

averaging of the elements of the covariance matrix associated with one column (row) of S allows full

rank covariance matrices for each dimension to be used in the 1-D stochastic maximum likelihood

technique, MODE [69]. In a later section, the 2D MODE technique is extended to create colored

noise techniques based on stochastic maximum likelihood.

For high signal-to-noise ratios (SNRs), all of these techniques perform well with respect to

the appropriate CRB. Of these diverse techniques, 2D MODE [38] and 2D IQML [10] (discussed in

detail later) can be related to a maximum likelihood solution of the two-dimensional exponential

estimation problem in colored noise, and only MEMP [25] and 2D IQML [10] achieve the 2-D CRB

[52].

6.3 Deterministic Maximum Likelihood

In this section, the two-dimensional maximum likelihood problem is formulated, then, via this

formulation the techniques are extended to the unknown colored noise problem. The 2-D maximum

likelihood solution follows almost directly from 1-D solution when the columns of the data matrix
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are stacked (this is the vectorize operation). Equation 148 then becomes

y =vec(Y) = (H 0 G)s + n (154)

or

y =Fs + n y - N(Fs,u2 R.n) (155)

where 0 denotes the Kronecker product, s = vec(S), and n = vec(N). Equation 148 implies that

the 2-D harmonics lie on a 1-D by 1-D grid. Removing this restriction by forcing S to be diagonal

eliminates the elements of s in equation 154 where si = 0. The new M1 M2 x p matrix F becomes

F=[ hiogl h 2 0g 2  ".. hp ® gp ] (156)

where s now contains just the diagonal elements of S. Additionally, the noise is circular Gaussian

such that E{n*n} = o2R and E{nTn} = 0, where (.)* denotes complex conjugate transpose.

Analogous to the 1-D case, the probability density and log-likelihood functions are

1 -(y-Fs)*R-1(y-rs)
(y) -- (157)

and

=(F, s, o- Rn; Y) In IR..J - T2 (y - Fs)*R- (y - Fs). (158)

The zeros of -, and 6 are the maximum likelihood (ML) estimates of 0.2 and s,

&2 (y - Fs)*R. (y - Fs) (159)MIM2 ( - ) rn (

9 =(F*R-nF)lF*R-ny = L*P,FL-*Y (160)

where the positive definite covariance matrix is decomposed as Rm' = L*L and

PL,F = L-*F(F*RnF)-lF*L- 1 where L* = (L*) - 1 . Substituting Equations 159 and 160 into

Equation 158 gives the compressed log likelihood function

7r

£(F, Rnn; Y) = -M 1M 2 In - y*(I - L*PL,FL*)*R-n(I - L*PL,FL-*)y - ln IRnI - M 1M 2.
M1M2  

n

(161)
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The maximum likelihood estimates of the remaining parameters are then found by maximizing

£(G, R..; y) or equivalently minimizing

minln ly*L-(I - PL,F)L-*yRnI
L,F

= minln ly*L-PLwL-*yR.n1 (162)
L,W

where the orthogonal projection to PL,F is

PLW = LW(W*RnnW)-lW*L* (163)

where the column space of W spans the subspace orthogonal to the signal subspace, W*F = 0

and W, or its eigenspace equivalent is full column rank. Then using the Cholesky decomposition of

Rnn = L*L, and full column rank and full row rank definitions of the Moore-Penrose pseudoinverse,

A+ = (A*A)-A* and A+ = A*(AA*) - respectively,

PLW LW(W*RnnW)- W*RnnW(W*RnnW)-IW*L* (164)

= LW(W*RnnW)-W*L*LW(W*RnnW)-W*L* (165)

= LW(LW)+(W*L*)+W*L* (166)

LW(W*Rn.W)+W*L*. (167)

Thus, the projection can be constructed from W, even if W is not full row or column rank, as is

the case in the following section.

Again as in the 1-D case the minimization in Equation 162 may be written as

minIn ly*L-lPL,wL-*y + In IRnnl (168)
L,W

where parameters in W can be maximized independently of the In IRnnI term. Thus, given a

consistent estimate of Rn , Rrn, the parameters in W that minimize Equation 168 are found from

miny*W(W*RnnW)+ W* y. (169)
w
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6.3.1 Known Colored Noise Maximum Likelihood. A matrix W that spans the subspace

orthogonal to the signal subspace is derived in [9] as the ((2M 1 - 1)(M 2 - p) + Mi - 1)x M 1 M2

matrix

w*= [ [1M10 ® c;](10
W. i, 'gCP-(170)

[ 10] ® Dp*-, - [OIIM,] 0

where I [ u-p+l 01 02 ... 0p-1 I and the (M 2 -p)xM 2 matrixCt and (M2-p+I)xM2

matrix Dp>.i are defined from

Ck ... C1 Co 0

Cz= [ .. " . (171)

0 Ck ... C1 CO

and
dk-1 ... di do 0

Dk 0 = (172)

0 dk- ... di do

The upper block of W* annihilates the harmonics in one direction )q, and the lower block of W*

predicts the harmonics in the second dimension -yy, based on the harmonics annihilated in the first

dimension. The minimization is performed with IQML-like iterations,

minf Y* (WrtilRnnWil) +Yfi, (173)
ft

where f=[ cT dT ]T,c=[ co Cl *.. Ck ]T, d=[do do ... dk-1 ]T, and Y is defined

such that

Yf =- W*y. (174)

The pseudoinverse in Equation 173 requires a significant amount of memory. An new equivalent

implementation based on the relation

(W*W)+ = ((WW*)+W)*(WW*)+W (175)

74



developed in Appendix F, requires only one quarter the memory. Then, the minimization in

Equation 173 becomes
~ 2

minjj((LWjW*_ IL*)+LWI)fi f' (176)
fiF

Computations can be reduced further from O(M 6) (M = M, = M 2; p < M) for the SVD in

(W*W)+ when this is replaced with the normal inverse by using a permutation matrix. The

matrix P chooses M1 M2 - p linearly independent rows of the banded matrix W* [12]. With the

(MiM2 -p) x (MiM 2 - p) matrix PW*WP* Equation 173 becomes

minfi*+ Y* P* (PW* Rnn Wi P*)l PYfi+. (177)
fi+1

Each of the Kronecker products in the definition of W* is a upper band matrix with the last having

the largest bandwidth M. Thus there exists a matrix PW* with bandwidth M and a band Cholesky

solution to Equation 177 is O(M 4) [19].

6.3.2 2-D Unknown Colored Noise Maximum Likelihood. This section develops a new

technique to estimate 2-D exponentials in unknown colored noise by extending the 2D IQML

technique. When the noise is white, Rnn = I, the algorithm to perform the minimization in

Equation 173 is called 2D IQML. This algorithm achieves the 2D CRB [9] [11] [52]. As in the 1-D

case, due to the Wold decomposition the 2-D CRB for the exponential parameters is the same for

unknown colored noise and known colored noise. Also as in the 1-D case, Rnn can be replaced with

a consistent estimate, Rnn, and the asymptotic properties of maximum likelihood minimization in

Equation 168 will be retained. The unknown colored noise variants for 2-D now follow directly

form the 1-D cases.

If the noise sequence is assumed stationary then the noise sequence is

n = y-Fs (178)

where F is estimated by 2D IQML and s is estimated by

s =(F*F)-F*y = F+y. (179)
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Then for stationary noise, Rnn is the block Toeplitz covariance matrix [28] whose elements are the

autocorrelation coefficients of N in Equation 148. N is attained by reversing the vec operation and

extracting length M1 segments of the vector n and ordering them into a matrix. The autocorrelation

coefficients of N are then the 2M 1 - 1 x 2M 2 - 1 matrix iNN. The matrix rNN is quickly attained

by taking the magnitude squared of the two-dimensional FFT of N zero-padded to 2M1 - 1 by

2M 2 - 1. Then the 2-D autocorrelation matrix Rnn is the block Toeplitz matrix

Ro R- 1  ... R-M 2

R1 R 0  R-.(M 2 -1)

Rn=( (180)

RM 2 RM 2.- Ro

where

-NN[0 rNN[... VNN[M1,i]

= rNN[1, i] rNN[0,i] NN[-(M - 1),i] (181)

rNN [Ml, i] rNN[M1 - 1, i] 7NN [0, i

With the estimate of f from 2D IQML and L from Rnn the iteration in Equation 173 can be

computed. Additionally, since this iteration improves the estimate of s, and consequently the

estimate n at each iteration s is estimated by Equation 160 and n is reestimated by Equation 178.

6.3.2.1 The 2D UCIQML algorithm. This techniques will be called 2D UCIQML

and is summarized as follows:

Step 1. Estimate the signal Fs. Attain the two dimensional frequencies (A, 7)i for i = 1 ... p

from 2D IQML. Form the matrix F from the frequencies. Then estimate s as

s =F+y. (182)

Step 2. Estimate the noise sequence n as

n = y-Fs. (183)
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Step 3. Estimate the autocorrelation of the noise rNN. Form the block Toeplitz matrix R,'

and its Cholesky decomposition Rn. = L*L.

Step 4. Estimate new (A,7)i for i = 1.. .p. Form Wji- from the last estimate f, ff-1 , and

iterate once
~ 2

min ((LWIW' 1L*)+LWji_)Yfi F (184)
fiF

Step 5. Re-estimate s as

9 =((L*)+F)+(L*)+y. (185)

Step 6. Repeat Step 2 - 5 for several iterations, or until estimates do not significantly change.

6.3.3 2-D Exponential Noise. This section develops a new spectral model for 2-D signals.

Algorithms to exploit an AR or ARMA model in two dimensions do not follow as readily as in one

dimension since these models do not have the same properties in two dimensions as they do in one

dimension. The rational polynomial model for colored noise is less appealing due to the absence

of a fundamental theorem of algebra in two dimensions. The 2-D AR model is not efficient on a

finite region of support and the set of AR coefficients describing a specific PSD is not unique. The

estimated parameters of the rational polynomial noise models in two dimensions vary according to

the technique used to estimate the model parameters.

Instead, a suitable low-order noise model with unique parameters is a filter, whose impulse

response is the sum of damped exponentials. In 1-D, this model is a subset of the ARMA noise

model. The sum of q damped exponentials is synonymous with the 1-D ARMA(q - 1, q) model.

The one-dimensional ARMA(q - 1, q) model transfer function (z-transform domain) in polynomial,

pole-zero and partial fraction form may be written as

CLz) ciz -  H" 1 (1-CIZ- 1)= s (186)

B(z) -1o bkzk - 1 (1 - kz - l ) =1 (1 -- (18)"

The 1-D AR(q) case, excepting the constant term, the coefficients of numerator polynomial in 1-D

ARMA(q - 1, q) model equal zero and

C(z) 1 1 q s

B(z) - bkz - k  - = (1l - Z -1  (1 - kz-1 ) •  (187)
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In both cases, the impulse response of the transfer function H(z) = C(z)/B(z) is sum of q expo-

nentials,
q

h[n] =JZSk/ n=0...N- 1. (188)
k=1

Thus, the filter for an AR process may be implemented with either the IIR filter coefficients, bk

for k = 1 ... q, or the FIR filter coefficients, cl - = sU3 for 1 = 0... N - 1. The exponential

amplitudes, sk for k = 1 ... q, can be adjusted to create any ARMA(q - 1, q) filter.

If this idea is expanded to two dimensions, then, the pole locations of any 2-D filter can be

fixed and the 2-D AR coefficients are not needed. Thus the impulse response

q

h[mi,m 2]=Zsk3. k'2 0<m1  Mi-1 0<m 2 :5M 2 -1 (189)
k=1

represents the coefficients of a 2-D filter with known pole locations. This filter is the unique pairing

of two 1-D ARMA spectra and suitably constrains our noise model. Equation 189 represents a new

2-D spectral model. For the case where q = 1 this defines a 2-D AR filter. In 1-D, a higher order

AR filter could be formed by cascading (convolving) several AR(1) filters. In 2-D, however, this

results in a filter with poles at all combinations of the spatial frequencies in each dimension. That

is, the filter becomes separable and less general. In the separable noise model, the 2-D covariance

matrix is independent in each dimension and is the Kronecker product of the covariance matrix for

each dimension,

R.. = RM2 ® RM1. (190)

Colored noise techniques developed in this chapter will be tested with both the exponential and

separable noise model.

6.3.4 2-D Exponential Noise Maximum Likelihood. This section develops another new

technique to estimate 2-D exponentials in unknown colored noise by extending the 2D IQML

technique. With the Exponential noise model, the 2-D extension of the ARUCIQML technique

now follows directly. Again the only difference in modeling the exponential noise sequence and

exponentials is the input to the filter that produces them, white noise or an impulse. Thus the

exponentials and noise poles may be estimated simultaneously by estimating p + q exponentials

with the 2D IQML method. To choose which exponentials are signal and which are noise, the
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exponential amplitudes are estimated from Equation 179. The p exponentials with the largest

amplitude are chosen to represent the signal and the remaining exponentials are chosen as the

noise poles. The 2-D autocorrelation matrix, i,, for exponential noise can then be formed. With

the estimate of f from the p 2-D exponentials chosen as signal with 2D IQML, and L from the

Cholesky decomposition of the iteration in Equation 173 can be computed.

6.3.4.1 The 2D ARIQML algorithm. This algorithm will be called 2D ARIQML

because of its similarity to the 1-D method ARUCIQML and is summarized as follows:

Step 1. Estimate p exponentials and q noise poles and their amplitudes. Attain the two

dimensional frequencies and amplitudes (A, y, s)i for i = 1 ... p + q from 2D IQML

Step 2. Determine which (A, 7, s)i for i = 1 ... p + q are exponentials and which are noise

poles. For high signal-to-noise ratios (SNRs) the p exponentials of with the largest amplitude are

the signal exponentials (A, y, s)i for i = 1 ... p; the remaining (A, Y, s)i for i = p + 1 ... q are the

noise poles.

Step 3. Construct W and L. Form W from the (A, -y)i for i = 1 ... p. Calculate the autocorre-

lation coefficients of exponential noise poles. Then form the Toeplitz matrix -nn and its Cholesky

decomposition Rnn = L*L.

Step 4. Estimate new (A, y)i for i = 1 ... p. Iterate once

min ((LWjiW*_iL*)+LWi_)Yfi (191)
fi F

Step 5. Form Wi- 1 from the last estimate of f, fi- 1 ,and repeat Step 4 for several iterations,

or until estimates do not significantly change.

Step 6. Estimate s as

= ((L*)+F)+(L*)+y. (192)

6.4 Stochastic Maximum Likelihood

This section extends the 2D MODE technique to colored noise and develops two new tech-

niques to estimate 2-D exponentials in unknown colored noise. 2-D stochastic maximum likelihood

techniques hinge on an accurate estimate of the 2-D data covariance matrix. For a single data
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instance, the outer product estimate of the covariance matrix is only rank one and thus of limited

utility. Other estimates of the 2-D covariance matrix such as the outer product of the MEMP data

matrix are not full size and thus provide limited accuracy. The assumption of stationarity or of

separability leads to a full rank and full size 2-D covariance matrix (Equation 180 and 190, respec-

tively). But, because the 2-D covariance matrix has 2MIM 2 - M,- M 2 + 1 independent parameters

[14], and only M1 M2 samples are available in a single data instance, the full 2-D stationary and

separable covariance matrix is of limited use for high resolution estimation of exponentials. The

independent components of the covariance matrix in Equation 190, however, provide the basis for

computationally less intensive colored noise algorithms based on a 1-D by 1-D formulation.

The 2-D techniques based on 2D IQML in the previous section are computationally intensive,

O(M3M3), especially as M and M 2 increase. A computational savings is attained when colored

noise techniques are based the separable model such as the stochastic maximum likelihood technique

2D MODE [38]. The 2D MODE technique minimizes an alternative form of Equation 169

mintr (PL,wL-*iYYL - 1) (193)

where PLW is given in Equation 167 and for the single data instance Ryy = yy*. The 2D MODE

technique assumes that the exponentials are any possible pairing of the estimated frequencies (a

separable model). Thus the matrix F is defined as the Kronecker product of G and H,

F = H ® G. (194)

To extend the 2D MODE technique to colored noise we will also assume that the noise is separable

as in Equation 190 then

PLW = I- PL,F

- I- L-*F(F*RjIF)-IF*L- 1

= I - (L-7 0 LM*)(H ® G)((H* ® G*)(RMj 0 R0Q)(H ® G))-i(H* 0 G*)(LM1 0 L-1)

- I- L H(H*R l)-H*L 1 ® L I G(G*R! G)-iG*L-1

= I-PHOP (195)
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where PH = L-* H(H*RM- H)- lH*L-' and PG = L-* G(G*R-'G)-G*Lt1. Then expressing

PH and PG in terms of their orthogonal projections PH and PG.

PL,W = I-PH ®PG

= I-(I-PH)O(I-PG)

= I-(I-P®I-I®P +P 1 PH )

P(®I+I ®PG-PH'®P± (196)

where I is an identity matrix appropriately sized for each Kronecker product. Equation 193 is then

min tr ((PH, ® 1 + 1 9 PG - PH' 0 PG) L*RL - ) (197)

where R yy*. 2D MODE considers the Kronecker product PH4 0 P4 to be higher order and

it is neglected. Thus, the minimization to find the Ai and the Yi can be performed separately.

Effectively, the trace of the blocks of the 2-D covariance matrix are averaged across one dimension.

Since both the 2-D covariance matrix estimated by the outer product of the vectorized data, and

the 2-D covariance matrix of a stationary noise process have special structure (an outer product,

and Toeplitz blocks, respectively), the average across blocks in each dimension can be computed

directly without the computationally intensive and memory consuming task of forming the 2-D

covariance matrices. The minimization for Ai is

intr ((1® PG)L-*RL- 1) = mintr (PGL R L-'1) (198)
Ai Ai , M

where R, = J:=0§1 Rm and RkI = R(kM 2 + 1: (k +1)M 2 ,1M 2 +1:q +1)M 2) is an M 2 x M2

submatrix of R. The minimization for 7i is

mintr ((PHL 0 I)L-*RL - l) = mintr (PHJL- L-j) (199)
"Yj 'j2 2

where (Rh)kl - tr(Rkl). Both minimizations are then accomplished by the 1-D colored noise

MODE techniques discussed in the previous chapter. The 1-D techniques CMODE, UCMODE,

and ARUCMODE are used almost directly in the 2-D techniques 2D CMODE, 2D UCMODE, and
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2D ARMODE. These minimizations then have the form

min a* ] (A* _1 nnAi-1)-1 Uaj, (200)

where RM = L*MLM and U = L' [ U1  U2 ... UP ]T is defined such that

ffa = A*ui. (201)

Here U = [ u 2 ... up ] contains the p principal eigenvectors of L-*RXL-1 or LM*,LiJ1. M

The components of the noise covariance matrix L, LM1 and LM2 , are estimated by forming !inn

from Equation 180 as in 2D UCIQML and 2D ARIQML, then averaging in the same manner

that L-*RA LM7i and L- RyLM1i are formed from L-*RL - 1. The harmonics, Ai or -j, are then

the roots of the polynomial given by the coefficients in a. Pairing the Ai and Yj is done with

Equation 153. The SVD of L-*R LM1 and L-* I L-I dominates the computations making this

an 0(M 3 ) technique where M=M1 =M2 .

6.4.0.2 The 2D UCMODE algorithm. The stochastic maximum likelihood technique

based on unknown colored noise will be called 2D UCMODE and is summarized as follows:

Step 1. Estimate the signal Fs. Attain the two dimensional frequencies (A, Y)i for i = 1 ... p

from 2D MODE. Pair the frequencies by least square amplitude as in Equation 153, however, allow

no frequency to be used more than once (to attain distinct frequencies). Form the matrix F from

the frequencies. Then estimate s as

s =F+y. (202)

Step 2. Estimate the noise sequence n as

n = y-Fs. (203)

Step 3. Estimate the autocorrelation of the noise rNN. Form the Toeplitz matrices RM. and

RM 2, and find their Cholesky decompositions, LM, and LM2 .
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Step 4. Estimate new (A,y)i for i = 1.. .p. Form Ai- 1 from the last estimate a, ai- 1 , for

each dimension
~ 2

minF(A*_L*M)+ajjF (204)
aiF

Step 5. Re-estimate s as

9 =((L*)+F)+(L*)+y. (205)

Step 6. Repeat Step 2 - 5 for several iterations, or until estimates do not significantly change.

6.4.0.3 The 2D ARMODE algorithm. The stochastic maximum likelihood tech-

niques based on exponential colored noise will be called 2D ARMODE and is summarized as

follows:

Step 1. Estimate p exponentials and q noise poles and their amplitudes. Attain the two

dimensional frequencies and amplitudes (A,y, s)i for i = 1 ... p + q from 2D MODE. Pair the

frequencies by least square amplitude, however, allow no frequency to be used more than once

(distinct frequencies).

Step 2. Determine which (A, y, s)i for i = 1 ... p + q are exponentials and which are noise

poles. For high signal-to-noise ratios (SNRs) the p exponentials of with the largest amplitude are

the signal exponentials (A, y, s)i for i = 1 ... p; the remaining (A, -y, s)i for i = p + 1 ... q are the

noise poles.

Step 3. Construct A and L. Form A from the (A, 7)i for i = 1... p. Form the autocorrelation

coefficients of the exponential noise poles. Form the Toeplitz matrices RM1 and RM2 , and find their

Cholesky decompositions, LM1 and LM2.

Step 4. Estimate new (A,-y)i for i = 1.. .p. Form Aj- 1 from the last estimate a, ai- 1 , for

each dimension
~ 2

minF (A*-LM)+Uai 2 (206)

Step 5. Form Ai- 1 from the last estimate of a, ai-jand repeat Step 4 for several iterations,

or until estimates do not significantly change.

Step 6. Estimate s as

= ((L*)+F)+(L*)+y. (207)
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Figure 25. PSD of two exponentials in exponential noise

6.5 Results

Simulations were run with all techniques in this chapter on both the exponential and separable

noise models. In the simulations, the 2-D colored noise techniques estimated two modes (s, A, 7)

{(.e j l ,09e - ° + J' l (e ° 2 + , 0.95e j ° 4 , 1)21 in exponential noise and separable expo-

nential noise with two frequencies in each dimension (sn, An,yn)i = {(1,O0.97e -j 0 + , 0.97e-J° 2 +)i,

(1, 0.97e30° '3 , 0.97e30°'1)2}. The PSD of the signal in exponential noise is shown in Figure 25 and

the signal in separable noise is shown in Figure 26.

Data instances of 8 x 8 samples were used. The results for the deterministic techniques are

shown in Figure 27 and 28. The results for the stochastic techniques are shown in Figure 29 and

30. Mean Square Error's (MSE's) were calculated using Monte Carlo simulations each with 200

independent experiments. All of the algorithms were run for three iterations. The straight solid

line in the figures is the deterministic 2D CRB which is described in [12].

The performance (MSE -1 ) of 2D CIQML shows that the 2-D deterministic techniques can

attain the CRB. However, no efficient estimator of the 2-D noise was found and the colored noise

techniques attain the CRB only asymptotically. The unknown colored noise technique 2D UCIQML,

which is not efficient in 1-D (see Chapter 4), and the pole estimating technique 2D ARIQML, which

may not be efficient for a finite number of samples in 2-D, did not attain the 2-D CRB [30]. The
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Figure 26. PSD of two exponentials in separable noise
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Figure 27. Estimation error for one of two exponentials in exponential noise (Deterministic ML).
Techniques: 2-D iterative quadratic maximum likelihood (iqml2d), known colorednoise iqml2d (ciqml2d), unknown colored noise iqml2d (uciqml2d), and exponential
noise uciqml2d (ariqml2d)
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Figure 28. Estimation error for one of two exponentials in separable noise (Deterministic ML).
Techniques: 2-D iterative quadratic maximum likelihood, fast version (iqml2f), known
colored noise iqml2f (ciqml2f), unknown colored noise iqml2f (uciqml2f), and expo-
nential noise uciqml2f (ariqml2f)

techniques did improve performance over the white noise techniques 2D IQML and 2D MODE.

An exception is the 2D ARIQML technique which does not estimate the noise poles accurately

enough in comparison to the signal poles. Thus, the inaccurate noise covariance estimate degrades

2D ARIQML estimation performance. This is true despite the fact that in estimates of the noise

only 2D ARIQML estimated the noise better than 2D ARMODE, which shows improvement using

its noise estimate. The noise estimates of both the AR related techniques were rather weak,

identifying noise poles to only within a quadrant of the complex plane. Thus, it is likely the 2D

IQML estimates were already accurate enough that no benefit was gained from the weak noise

estimates. The performance of the techniques in separable noise was slightly better with respect

to the CRB. Of the 2-D unknown noise techniques 2D UCIQML improves over the performance of

2D IQML in colored noise, and 2D UCMODE performs better then 2D ARMODE. The 2D MODE

and related colored noise techniques fall short of the full 2D CRB, as they are expected to do, since

they are 1-D by 1-D techniques [52].

86



Mean Squared Error of arg(gamma) mode 2

80

70

60 W

50

"40." 
"

30-- mode2d

2 -//
20 '/ /Ix x ucmode2d

// ,/ arm ode2d

10 /

0 5 10 15 20 25 30 35 40 45 50
SNR

Figure 29. Estimation error for one of two exponentials in exponential noise (Stochastic ML).
Techniques: 2-D method of direction estimation (mode2d), known colored noise
mode2d (cmode2d), unknown colored noise mode2d (ucmode2d), and exponential
noise ucmode2d (armode2d)
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Figure 30. Estimation error for one of two exponentials in separable noise (Stochastic ML). Tech-
niques: 2-D method of direction estimation (mode2d), known colored noise mode2d

(cmode2d), unknown colored noise mode2d (ucmode2d), and exponential noise uc-
mode2d (armode2d)

87



VII. Application to Synthetic Aperture Radar

In this chapter, the 1-D and 2-D colored noise techniques developed in the previous chapters

are applied to simulated and radar chamber SAR data. As a measure of merit, the residual error

between the estimated model and the data is used to determine how well the model fits the data.

This metric is used to determine if the colored noise algorithms provide better estimates of expo-

nential content of the data than their white noise counterparts. In addition, the scatterer locations

identified by the 2-D techniques are examined for suitability as pattern recognition features.

7.1 1-D SAR Data

To test the algorithms on 1-D radar data, two down-range profiles (cross-range data was less

well modeled as damped exponentials) were selected from the SAR image of a tank produced by

XPATCH software [1]. The profiles are shown in Figures 31 and 34. A damped exponential model

was fit to each profile with colored and white noise algorithms for model orders p = 1 ... 10. A noise

model order of q = p, or q = 2 was used for the unknown colored noise algorithms. The normalized

error between the estimated model, k, and the radar profile y, was calculated as

_ IIY - k112IIYI12

where I1yI12 = Ny_7 The resulting modeling error is shown in Figures 32 through 36. The results

show that for low model order p, the ARUCIQML and ARMAIQML algorithms fit the data better.

As the model order increases, IQML and UCIQML continually model more of the exponential

signal and noise, and better fit the data. Use of ARUCIQML and ARMAIQML fits this radar data

better than IQML at low model orders and may provide mode accurate relative scatterer locations

(exponential frequencies) for target identification in this case. Results for the stochastic algorithm

for a noise model order of q = p are shown in Figures 37 and 38.

As was indicated in the development of the 1-D colored noise algorithms, there is an easy way

to increase the accuracy of white noise algorithms. Simply fit a larger model order to the data than

the expected number of signals. Then, pick the highest energy part of the estimate as signal. This

is called overmodeling. It is also the initial step in the AR and ARMA colored noise algorithms.

Including the overmodeling technique, IQMLO, the resulting modeling error is shown in Figures

39 and 40. A noise model order of q = p was used for the unknown colored noise algorithms.
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Figure 31. Down-range radar profile 1
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Figure 32. Modeling error using p noise poles (Deterministic ML, Profile 1). Techniques: iterative
quadratic maximum likelihood (iqml), unknown colored noise iqml (uciqml), autore-
gressive uciqml (aruciqml), and autoregressive moving average uciqml (armaiqml)
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Error in Modeling Radar Profile #1, q=2
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Figure 33. Modeling error using two noise poles (Deterministic ML, Profile 1). Techniques: iter-
ative quadratic maximum likelihood (iqml), unknown colored noise iqml (uciqml), au-
toregressive uciqml (aruciqml), and autoregressive moving average uciqml (armaiqml)
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Figure 34. Down-range radar profile 2
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Error in Modeling Radar Profile #2, q=p
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Figure 35. Modeling error using p noise poles (Deterministic ML, Profile 2). Techniques: iterative
quadratic maximum likelihood (iqml), unknown colored noise iqml (uciqml), autore-
gressive uciqml (aruciqml), and autoregressive moving average uciqml (armaiqml)
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Figure 36. Modeling error using two noise poles (Deterministic ML, Profile 2). Techniques: iter-
ative quadratic maximum likelihood (iqml), unknown colored noise iqml (uciqml), au-
toregressive uciqml (aruciqml), and autoregressive moving average uciqml (armaiqml)
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Error in Modeling Radar Profile #1, q=p
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Figure 37. Modeling error using p noise poles(Stochastic ML, Profile 1). Techniques: method of
direction estimation (mode), unknown colored noise mode (ucmode), autoregressive
ucmode (arucmode), and autoregressive moving average ucmode (armamode)
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Figure 38. Modeling error using p noise poles (Stochastic ML, Profile 2). Techniques: method of
direction estimation (mode), unknown colored noise mode (ucmode), autoregressive
ucmode (arucmode), and autoregressive moving average ucmode (armamode)
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Error in Modeling Radar Profile #1, q=p

'4

25- X

~20 A

o0 '** 0 0

0 k o , o K
\+

.0 \ 0 o

0
210 + +

+ +iql \

5 - ciqml- - . .
X laruci:Iml---------------
S 0anaicaml

1 2 3 4 5 6 7 8 9 10
Model Order

Figure 39. Modeling error using p noise poles (Overmodeling, Profile 1). Techniques: iterative
quadratic maximum likelihood (iqml), iqml with p extra noise poles (iqmlo), unknown
colored noise iqml (uciqml), autoregressive uciqml (aruciqml), and autoregressive mov-
ing average uciqml (armaiqml)

When overmodeling is compared to the colored noise techniques the performance difference is less

significant. In this sense, the colored noise algorithms may simply be correcting for a bad choice

of model order. From an algorithmic point of view, the difference between overmodeling and the

colored noise approaches is clear. Both approaches estimate the noise. Overmodeling discards the

noise part of the estimate. Conversely, the colored noise techniques use the noise estimates to

improve the signal estimates.

7.2 2-D SAR Data

For 2-D data, bounds on the expected performance of any technique that produces good

estimates are described below. These bounds assume that the data are well modeled as a finite sum

of damped exponentials. For the Synthetic Aperture Radar (SAR) problem, the M1 x M2 focused

image, X, and interpolated phase history, W, are represented as a discrete Fourier transform (DFT)

pair by

X = DMWD 2, (208)
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Figure 40. Modeling error using p noise poles (Overmodeling, Profile 2). Techniques: iterative
quadratic maximum likelihood (iqml), iqml with p extra noise poles (iqmlo), unknown
colored noise iqml (uciqml), autoregressive uciqml (aruciqml), and autoregressive mov-
ing average uciqml (armaiqml)

where DM is the normalized DFT matrix with (k, l)1h element e-i kI//-M, 0 < k, 1 < M - 1. A

measure of the error between the phase histories, W, and the estimated model, Wv, is given by

e - IIEIIF =_ IIW - WIIF. (209)

To bound the performance of parameter estimation schemes one might consider low rank models

other than the damped exponential model. A general low rank decomposition of the M 1 x M 2

matrix, W, is

W = Wp + E, (210)

where Wp is rank-p and E is a residual matrix. The best approximation of order p is found by

using the SVD of W : W - UEV*. Here the approximated matrix, W, can be assembled from

rank-p versions of the SVD component matrices as

4/ = U(I : p, :)E(1 : p, 1: p)V(1 : p, :)*, (211)
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where E contains the p largest singular values, the p columns of U are the associated left singular

vectors, and the p columns of V* are the associated right singular vectors. The rank-p SVD

approximation provides a lower bound on the error of all other rank-p approximations in the form

W = GSH T . The error attained by the rank-p SVD approximation is given by

min (M 1,I 2 )

eSVD = IIEsvDIIF -- o7?, (212)
i=p+l

where o-i is the ith singular value in E. Now, consider the rank-p model of 2-D damped exponentials.

The columns of G and H are Vandermonde. Since this is a restriction, this limits the accuracy of

our rank-p approximation. The error incurred by this assumption is less than that of Equation 212.

Thus edamp > eSVD. Now, consider a further restriction on the structure of G and H where

the exponential frequencies Aj, and 7i can take on only discrete values, specifically, the Discrete
j7 2' M -k j 2,,M._,

Fourier Transform (DFT) frequencies, Ai e {ej 1 }M=0 and -y E fe {e3rl=0 . Observe from

Equations 208 and 209 that the minimum is attained by selecting the spatial frequencies of the p

values of X with largest moduli. This DFT frequency assumption represents a restriction to the

damped exponential model. The corresponding errors then satisfy eDFT edamp eSVD.

7.2.1 Model Fitting. The 2-D exponential estimation algorithms were tested with two

sources of SAR data whose images are shown in Figures 6, 7, 41, and 42. The first source is

the XPATCH radar cross section (RCS) modeling tool. XPATCH computes polar-coordinate RCS

measurements from a Computer Aided Design (CAD) model of a target. The data selected is

of a generic tank seen from above at a steep look-angle. The data was processed with the SAR

simulation software provided with XPATCH, which produced images interpolated to a rectangular

grid. Since the entire extent of the data is interpolated, the phase history contains regions of zero

measurement. The windowing effect of including these zero measurements in the data degrades

exponential estimation. Thus, a non-zero square segment of the phase history data was selected.

The second source of SAR data is radar test chamber data of a scale model of a C-29 aircraft.

Algorithms were tested on this unfocused data and on the data focused by two of the methods

discussed in Chapter 4. Due to computational considerations, only scattering center focus could be

applied to the full 128 x 128 data size. Also, due to computational considerations, the techniques

based on 2D IQML could only be run on a 16 x 16 data size (a comparable computational load to
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running the techniques based on 2D MODE on the 128 x 128 data size). Because of the better than

Fourier resolution, the scatterer locations of the 2-D techniques are compared to (overlaid on) an

image of the full 128 x 128 data size. Two method were used to create the focused 16 x 16 data. In

one case, the 128 x 128 scattering center focus image was decimated by 8, and, in the other case,

the inverse distance method was used on a 16 x 16 sample of the chamber data. The 16 x 16 data

samples for the XPATCH tank and C-29 aircraft are shown in Figures 43 through 45. An example

of the Fourier resolution for 16 x 16 data samples (zero-padded in the phase history to 128 x 128

samples) is shown in Figure 46 for the XPATCH tank.

For this set of SAR data, the fit of the low rank approximations discussed in the previous

section was determined. The normalized error between an estimated model and the phase history

was calculated as

_IIW- IIFe IlJ W ll 11 (2 1 3 )

The error bounds given by the SVD and the DFT were established for this data. These represent

lower and upper bounds, respectively, between which any reasonable approximation method should

perform. The 2-D white and colored noise techniques developed in the previous chapter were tested

with this data. Results for the images are plotted for the deterministic techniques in Figures 47

through 50, for the stochastic techniques in Figures 51 through 53 and 56 through 58 , and for other
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Figure 45. C-29 aircraft, inverse distance focus
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Figure 46. XPATCH tank, 16 x 16 zero-padded to 128 x 128

2-D techniques in Figure 54, 55, 59 and 60. These results compare how well the exponential content

chosen by each technique fits the data. A better fit will result in less error. The actual pole locations

are shown later for some sample model orders to understand the suitability of the techniques as

region of interest operators, or features for model-based pattern recognition. Locations of the

scatterers in the images are plotted for the deterministic techniques in Figures 61 through 64, for

the stochastic techniques in Figures 65 through 67 and 70 through 72, and for other 2-D techniques

in Figures 68, 69, 73 and 74.

The pairing necessary in the 1-D by 1-D techniques may be accomplished in several ways,

depending on an assumption of exponentials with distinct or non-distinct frequencies. The 1-D by

1-D techniques developed in Chapter 6 use distinct exponentials for an initial estimate, then allow

the final result to have non-distinct exponentials. This combination results in the best performance

in terms of the CRB and model fitting error. A drawback of this combination, the tendency of the

1-D by 1-D methods to pick false scatterers in the same column or row as true scatterers (Figure 72),

can be mitigated by other combinations. Other choices of distinct and non-distinct scatters can lead

to the identification of additional scattering centers as shown in Figure 75 and 76. One drawback

is these cases is in the fully distinct pairing method; erroneous combinations of exponentials will

result from the forced pairing. One possible remedy of the pairing problem is to overmodel the
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exponentials as in the 2D ARMODE technique then choose the signal exponentials with some full

2-D matching scheme. A similar approach is taken in the 2D Prony matching technique [59].

The matching scheme of 2D Prony estimates the amplitudes of each row (column) based on

the exponential frequency estimates for the columns (rows). The amplitudes are then used as data

to attain p row exponential frequency estimates to pair with the column (row) frequency. The

pairings of exponentials closest to the pairings generated when the roles of row and column are

reversed (in parentheses) are matched. A matching technique for the 1-D by 1-D algorithms along

the lines of the 2D Prony technique should at least duplicate the good performance of this technique

in selecting many individual scatterers and not simply overmodeling high-energy scatterers (Figures

73 and 74). This is indeed the case as shown in Figures 77 and 78. The fit of the data using the

1-D by 1-D stochastic ML techniques is also improved by matching in this manner (Figures 79 and

80). The scattering center locations identified by the 2-D deterministic ML techniques are also

improved by performing the estimation twice and matching the results as in 2D Prony (Figures 81

through 84).

7.3 Discussion

Although the data is limited some observations can be made from the results. The error

in fitting the data for the 2-D techniques do not in general indicate better performance at low

model as the 1-D results do. This is probably due to an inability to model the scatterers well in

both dimensions with damped exponentials. The cross-range dimension created by the synthetic

aperture is not the smooth damped exponential data seen in the down-range data. Overall, the

colored noise techniques show no significant improvement in fitting the data over the white noise

techniques.

In the area of focusing, the fit error of the focused C-29 data (Figure 58) vs. the unfocused

C-29 data (Figure 57) and the scatterers identified (Figures 72 vs. 71) indicates the improvement

gained from focusing. Additionally, the inverse distance focusing (Figures 49 and 52) does work

as well with this data as subsampling the scattering center focus data (Figure 50 and 53) does.

Scattering center focus is also especially beneficial for the 1-D by 1-D techniques since it is the only

computationally tractable focusing method for the full 128 x 128 data.
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Comparing the fit of different techniques for the same size data set (Figures 47, 51 and 54 and

Figures 50, 53 and 55 ) and the scatterer locations identified (Figures 61, 65 and 68 and Figures

64, 67 and 69 ) shows that the full 2-D techniques based on 2D IQML fit the data the best, the 1-D

by 1-D techniques based on 2D MODE performed next best, while the remaining 2-D techniques

did not fit the data as well.

The high resolution of these techniques is evident in the results. Notice that for most tech-

niques the major scatterers in the 128 x 128 image are accurately located despite use of only

16 x 16 data samples. For the 1-D by 1-D techniques, however, fewer false scattering locations were

identified with the 128 x 128 data.

Consistent identification of the same scatterers is important for target recognition. The 2-D

techniques based on 2D IQML consistently identify the same scattering centers in one image at

different model orders (Figure 61). However, since 2D IQML requires exponentials with distinct

frequencies in one dimension, not all the same scatterers are identified when the image is rotated

90 degrees (Figure 62) and a different fit of the model and data is observed (Figures 47 and 48).

Scatterer locations are not distinct in both dimensions, thus, they are not correctly located by these

techniques in all cases. For this SAR data then, the use of 2D Prony matching with the exponential

estimation techniques gives better scatterer locations (Figures 85 and 86).

The colored noise techniques with 2D Prony matching produce a better fit to the data than

the white noise techniques at many model orders. In addition, the colored noise techniques do

identify different scattering centers than the white noise techniques. The 1-D by 1-D techniques,

as indicated earlier, tend to identify scatterers on a line. Additionally, on the 128 x 128 data the

colored techniques tended to pick out new scattering centers instead of overmodeling high energy

ones. The scattering centers identified, however, are dependent on assumptions of distinct and

non-distinct scattering centers, and many false scattering centers are identified as discussed in the

previous section. This is then the reverse of the problem of 2D IQML where too few scattering

centers are identified because of the technique's requirement for distinct frequencies in one of the

dimensions. The solution to this problem is provided by the matching technique in the 2D Prony

algorithm. With this matching technique most scattering centers are identified and false scattering

centers off the target are eliminated.
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Figure 47. Representation error vs. model order (Deterministic ML, 16 x 16 tank image). Tech-
niques: 2-D iterative quadratic maximum likelihood (2D IQML), unknown colored
noise iqml2d (2D UCIQML), and exponential noise uciqml2d (2D ARIQML), Singu-
lar Value Decomposition (SVD), Discrete Fourier Transform (DFT). 2D IQML related
techniques are limited to estimating 8 total exponentials and noise poles (4 exponen-
tials and 4 noise poles in 2D ARIQML here)
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Figure 48. Representation error vs. model order (Deterministic ML, 16 x 16 rotated tank image).
Techniques: 2-D iterative quadratic maximum likelihood (2D IQML), unknown colored
noise iqml2d (2D UCIQML), and exponential noise uciqml2d (2D ARIQML), Singular
Value Decomposition (SVD), Discrete Fourier Transform (DFT)
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Figure 49. Representation error vs. model order (Deterministic ML, 16 x 16 C-29 inverse distance
focus image). Techniques: 2-D iterative quadratic maximum likelihood (2D IQML),
unknown colored noise iqml2d (2D UCIQML), and exponential noise uciqml2d (2D
ARIQML), Singular Value Decomposition (SVD), Discrete Fourier Transform (DFT)
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Figure 40. Representation error vs. model order (Deterministic ML, 16 x 16 C-29 scatersincee

focus image). Techniues: 2-D iterative quadratic maximum likelihood (2) IQML),
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Figure 50. Representation error vs. model order (Deterministic ML, 16 x 16 C-29 scattering center
focus image). Techniuqes: 2-D iterative quadratic maximum likelihood (21) IQML),
unknown colored noise iqml2d (2D UCIQML), and exponential noise uciqml2d (21)
ARIQML), Singular Value Decomposition (SVD), Discrete Fourier Transform (DFT)
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Figure 51. Representation error vs. model order (Stochastic ML, 16 x 16 tank image). Techniques:
2-D method of direction estimation (2D MODE), unknown colored noise mode2d (2D
UCMODE), and exponential noise ucmode2d (2D ARMODE), Singular Value Decom-
position (SVD), Discrete Fourier Transform (DFT)
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Figure 52. Representation error vs. model order (Stochastic ML, 16 x 16 C-29 inverse distance
focus image). Techniques: 2-D method of direction estimation (2D MODE), un-
known colored noise mode2d (2D UCMODE), and exponential noise ucmode2d (2D
ARMODE), Singular Value Decomposition (SVD), Discrete Fourier Transform (DFT)
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Figure 53. Representation error vs. model order (16 x 16 C-29 scattering center focus image).
Techniques: 2-D method of direction estimation (2D MODE), unknown colored noise
mode2d (2D UCMODE), and exponential noise ucmode2d (2D ARMODE), Singular
Value Decomposition (SVD), Discrete Fourier Transform (DFT)
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Figure 54. Representation error vs. model order (Other techniques, 16 x 16 tank image). Tech-
niques: 2-D Prony (2D PRONY), state space (STATESP), and matrix enhance-
ment matrix pencil (MEMP) methods, Singular Value Decomposition (SVD), Discrete
Fourier Transform (DFT)
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Figure 55. Representation error vs. model order (Other techniques, 16 x 16 C-29 scattering center
focused image). Techniques: 2-D Prony (2D PRONY), state space (STATESP), and
matrix enhancement matrix pencil (MEMP) methods, Singular Value Decomposition
(SVD), Discrete Fourier Transform (DFT)
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Figure 56. Representation error vs. model order (Stochastic ML, 128 x 128 tank image). Tech-
niques: 2-D method of direction estimation (21) MODE), unknown colored noise
mode2d (21) UCMODE), and exponential noise ucmode2d (2D ARMODE), Singu-
lar Value Decomposition (SVD), Discrete Fourier Transform (DFT)
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Figure 57. Representation error vs. model order (Stochastic ML, 128x 128 C-29 unfocused image).
Techniques: 2-D method of direction estimation (2D MODE), unknown colored noise
mode2d (2D UCMODE), and exponential noise ucmode2d (2D ARMODE), Singular
Value Decomposition (SVD), Discrete Fourier Transform (DFT)
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Figure 58. Representation error vs. model order (Stochastic ML, 128 x 128 C-29 scattering cen-
ter focused image). Techniques: 2-D method of direction estimation (2D MODE),
unknown colored noise mode2d (2D UCMODE), and exponential noise ucmode2d (2D
ARMODE), Singular Value Decomposition (SVD), Discrete Fourier Transform (DFT)
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Figure 59. Representation error vs. model order (Other techniques, 64 x 64 tank image). Tech-
niques: 2-D Prony (2D PRONY), state space (STATESP), and matrix enhance-
ment matrix pencil (MEMP) methods, Singular Value Decomposition (SVD), Discrete
Fourier Transform (DFT)
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Figure 60. Representation error vs. model order (Other techniques, 64 x 64 C-29 scattering center
focused image). Techniques: 2-D Prony (21) PRONY), state space (STATESP), and
matrix enhancement matrix pencil (MEMP) methods, Singular Value Decomposition
(SVD), Discrete Fourier Transform (DFT)
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Figure 61. Deterministic ML scatterers (16x16 tank image).
o = 2D IQML + = 2D UCIQML x = 2D ARIQML
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Figure 62. Deterministic ML scatterers (16 x 16 rotated tank image).
o = 2D IQML + = 2D UCIQML x = 2D ARIQML
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Figure 63. Deterministic ML scatterers (16 x 16 C-29 inverse distance focused image).
o = 2D IQML + = 2D UCIQML x = 2D ARIQML
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Figure 64. Deterministic ML scatterers (16 x 16 C-29 scattering center focus image).
o = 2D IQML + = 2D UCIQML x = 2D ARIQML
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Figure 65. Stochastic ML scatterers (16 x 16 tank image).
o = 2D MODE + = 2D UCMODE x = 2D ARMODE
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Figure 66. Stochastic ML scatterers (16 x 16 C-29 inverse distance focused image).
o = 2D MODE + = 2D UCMODE x = 2D ARMODE
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Figure 67. Stochastic ML scatterers (16 x 16 C-29 scattering center focused image).
o =2D MODE + =2D UCMODE x =2D ARMODE
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Figure 68. Scattering centers of other 2-D techniques (16 x 16 tank image).
o = 2D PRONY + = STATE SPACE x = MEMP
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Figure 69. Scattering centers of other 2-D techniques (16 x 16 C-29 scattering center focused
image).
o = 2D PRONY + = STATE SPACE x = MEMP
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Figure 70. Stochastic ML scatterers (128 x 128 tank image).
o = 2D MODE + = 2D UCMODE x = 2D ARMODE
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Figure 7 1. Stochstic ML scatterers (128 x 128 C-29 unfocused image).
o =2D MODE + =2D UCMODE x =2D ARMODE
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Figure 72. Stochastic ML scatterers (128 x 128 C-29 scattering center focused image).
o = 2D MODE + = 2D UCMODE x = 2D ARMODE
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Figure 73. Scattering centers of other 2-D techniques (64 x 64 tank image).
o = 2D PRONY + = STATE SPACE x = MEMP
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Figure 74. Scattering centers of other 2-D techniques (64 x 64 C-29 scattering center focused
image).
o = 2D PRONY + = STATE SPACE x = MEMP
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Figure 75. Stochastic ML distinct scatterers (128 x 128 C-29 scattering center focused image).
o = 2D MODE + = 2D UCMODE x = 2D ARMODE
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Figure 76. Stochastic ML non-distinct scatterers (128 x 128 C-29 scattering center focused image).
o = 2D MODE + = 2D UCMODE x = 2D ARMODE
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Figure 77. Stochastic ML scatterers, 2D Prony matching (64 x 64 Tank image).
o = 2D MODE + = 2D UCMODE x = 2D ARMODE
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Figure 78. Stochastic ML scatterers, 2D Prony matching (64 x 64 C-29 scattering center focused
image).
o = 2D MODE + = 2D UCMODE x = 2D ARMODE
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Figure 79. Representation error vs. model order (Stochastic ML, 64 x 64 tank image), 2D Prony
matching. Techniques: 2-D method of direction estimation (2D MODE), unknown col-
ored noise mode2d (2D UCMODE), and exponential noise ucmode2d (2D ARMODE),
Singular Value Decomposition (SVD), Discrete Fourier Transform (DFT)
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Figure 80. Representation error vs. model order (Stochastic ML, 64 x 64 C-29 scattering center
focused image), 2D Prony matching. Techniques: 2-D method of direction estimation
(21) MODE), unknown colored noise mode2d (21) UCMODE), and exponential noise
ucmode2d (21) ARMODE), Singular Value Decomposition (SVD), Discrete Fourier
Transform (DFT)
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Figure 81. Deterministic ML scatterers, 2D Prony matching (16 x 16 Tank image).
o = 2D IQML + = 2D UCIQML x = 2D ARIQML
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Figure 82. Deterministic ML scatterers, 2D Prony matching (16 x 16 C-29 scattering center fo-
cused image).
o = 2D IQML + = 2D UCIQML x = 2D ARIQML
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Figure 83. Representation error vs. model order (Deterministic ML, 16 x 16 tank image),
2D Prony matching. Techniques: 2-D iterative quadratic maximum likelihood (2D
IQML), unknown colored noise iqml2d (2D UCIQML), and exponential noise uciqml2d
(2D ARIQML), Singular Value Decomposition (SVD), Discrete Fourier Transform
(DFT)
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Figure 84. Representation error vs. model order (Deterministic ML, 16 x 16 C-29 scattering center
focused image), 2D Prony matching. Techniques: 2-D iterative quadratic maximum
likelihood (2D IQML), unknown colored noise iqml2d (2D UCIQML), and exponential
noise uciqml2d (2D ARIQML), Singular Value Decomposition (SVD), Discrete Fourier
Transform (DFT)

131



Model Order = 8

0

20-

40

7560
X 0

80

100

120
SI I I

0 20 40 60 80 100 120
pixel

Figure 85. Stochastic ML scatterers, 2D Prony matching (64 x 64 C-29 scattering center focused
image).
o = 2D MODE + = 2D UCMODE x = 2D ARMODE
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Figure 86. Deterministic ML scatterers, 2D Prony matching (16 x 16 C-29 scattering center fo-
cused image).
o =2D IQML + =2D UCIQML x =2D ARIQML
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VIII. Conclusions

Maximum likelihood techniques were developed to estimate exponentials in colored noise.

Methods were developed for one and two dimensions, for stationary colored noise, and colored

noise modeled with a rational polynomial. For all these cases, separate methods were developed

for a deterministic signal assumption and for a stochastic signal assumption.

All these techniques perform well when the noise model matches the actual noise. In these

cases, accuracy in estimating exponential frequencies was improved over techniques assuming white

noise. All techniques attained the Cram6r-Rao estimation bound (CRB) either for short data

records or asymptotically with good performance for short data records. These techniques also

performed well when the noise was white and, in some cases, improved low SNR performance by

mitigating the colored appearance of a finite sample of white noise. In two dimensions, the increased

degrees of freedom of 2-D data makes it difficult to accurately estimate the noise. Thus, only slight

improvement over the white noise techniques was observed and no technique attained the CRB for

short data records.

The colored noise techniques were applied to Synthetic Aperture Radar data which, when

correctly processed, can be modeled as the sum of damped exponentials for targets consisting of

point scatterers. In one dimension, colored noise techniques corrected for a poor choice of model

order in much the same way as modeling the data with an increased model order and discarding

the low energy part (overmodeling). In fact, the 1-D colored noise estimation techniques can be

viewed as overmodeling then using the overmodeled part as a noise estimate and to improve the

estimate of the signal. In two dimensions, better fit of the data at low model orders was not

observed. The 2-D techniques based on 2D IQML identified a limited number of scatterer in one

dimension due to a limitation on the algorithm to distinct frequencies in one dimension. The 1-D

by 1-D techniques based on 2D MODE tended to identify scatterers along lines in either dimension.

The use of 2-D Prony matching improved scattering center locations in all techniques. The 2-D

techniques based on 2D IQML and on 2D MODE when paired with the matching techniques of 2D

Prony consistently identified many individual scatterers and had few false scatterers. In these cases,

the unknown colored noise techniques identified different scatterers from the white noise techniques

and fit the data better as well.
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The 2-D techniques based on the colored noise model more accurately model SAR data

than existing 2-D white noise techniques. The 2-D colored noise techniques developed in this

thesis should significantly aid in the development of model-based pattern recognition algorithms to

identify targets in SAR images. All of the 2-D techniques when combined with scattering center

focus and 2D Prony matching provide robust tools for identifying scattering centers on an object

in a SAR image. These techniques will aid in understanding the consistency with which scatterers

can be identified across different SAR images. Of the techniques the 2D IQML and 2D UCIQML

techniques tied with 2D Prony matching appear to give the best estimates of the locations of true

2-D scatterers while avoiding overmodeling of these scatterers.

8.1 Contributions

List of the contributions in this dissertation.

" A concise mathematical model for damped exponentials on an irregularly sampled grid.

(Chapter 4)

" A computationally efficient (real-time) method for interpolating or focusing SAR images

containing damped exponentials. (Chapter 4)

" Closed-form solution of the 1-D maximum likelihood problem of estimating deterministic

exponentials in unknown colored noise. (Chapter 5)

" Reformulation of the 1-D colored noise stochastic maximum likelihood problem to avoid a

global search for the solution. (Chapter 5)

" Several 1-D deterministic and stochastic maximum likelihood algorithms for estimating 1-D

exponentials in colored noise. (Chapter 5)

" Extension of deterministic maximum likelihood estimation of 2-D exponentials to unknown

colored noise. (Chapter 6)

" Extension of stochastic maximum likelihood estimation of 2-D exponentials on a 1-D by 1-D

grid to unknown colored noise. (Chapter 6)

" A spectral model to produce unique 2-D spectra (noise, or an impulse driving a 2-D damped

exponential filter). (Chapter 6)
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* Several 2-D deterministic and stochastic maximum likelihood algorithms for estimating 2-D

exponentials in colored noise (Chapter 6)

* Unique properties of lower (upper) triangular Toeplitz matrices, commutivity and a lower

(upper) triangular Toeplitz inverse. (Appendix A)

8.2 Future Work

There are several areas where the work initiated by this dissertation could be expanded and

potential new insights gained:

* Apply the unknown colored noise techniques developed in this dissertation to multiple data

instances and unit-circle constrained frequencies. In this case, many other application are

available for the techniques, such as, array processing in the presence of noisy jammers.

* Develop methods of simultaneously estimating the signal and the noise for the unknown col-

ored noise exponential estimation methodology developed in this dissertation. Such methods

will likely lead to efficient techniques with respect to the CRB for exponential and noise

estimation.

* Investigate the consistency and resolution with which scatterers are identified at different

look angles to the target. Recognition of different targets requires consistent identification of

the scatterer locations on the targets. The large set of XPATCH (three SAR bands, several

targets, several elevations and all aspects), and C-29 chamber data (many elevations and

many aspects at very fine frequency and angle resolution) allows for an extensive analysis.

* Develop a model-based pattern recognition system using relative locations of scatterers on the

target. Investigation of real world effects such as occlusion of scattering centers will determine

the utility of such a system.
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Appendix A. Commutivity of Operations

The approximate commutivity of the operations in Equation 105 is based on the commutivity

of the convolution operation. Similarly, the matrix formulation of convolution, multiplication of

lower (upper) triangular Toeplitz matrices commutes. The commutivity of block-diagonal triangular

Toeplitz matrices is implied in [22]. The following theorems establish the commutivity of the

triangular Toeplitz matrices, the triangular Toeplitz structure of the inverse of a triangular Toeplitz

matrix, and the commutivity of the operations in Equation 105.

Theorem. Let A , B be N x N upper (lower) triangular Toeplitz matrices and their product

be C = AB, then, the matrices A and B commute, and C = BA. Proof. The elements of the

product of the upper triangular matrices A and B are

Cij L akbkj i < j. (214)
k=i

Since the matrices A and B are also Toeplitz, they are symmetric about the anti-diagonal and the

their elements are related as

ai,k={i...j} = ak={j ...i},j. (215)

Thus,

cij Lakjbik i < j, (216)
k=i

or C = BA. The lower triangular case is simply seen by taking the transpose of the upper triangular

matrix products AB = BA.

Theorem. Let T be an upper (lower) triangular Toeplitz matrix then its inverse T 1 is also

upper (lower) triangular Toeplitz. Proof. The general form for the inverse of a Toeplitz martix

given in [45] is factored into Toeplitz matrices as

1 0 ... 0 1 bi ... bN 0 0 ... 0 0 aN ... a
a . 0. . .: 0 .0

pT - 1  = "_

0 ". b1  ". 0 a N

aN ... al 1 0 ... 0 1 bi "" bN 0 0 ... 0 0

(217)
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where

to t- 1 ... t-N p

Ta .= a 0 (218)

" '. t-1

tN tl tO aN 0

and
to t-1 "" t-N bN 0

Tb= 0 (219)

" ". t-1 b,

tN ... tl to 1 P

If T is upper triangular, t2 - 0 i = -1... - N, and since T - 1 is also upper triangular a is

simply the first column of the inverse, normalized as a - 1 0 ... 0 ] .Substituting this in

Equation 217 gives

1 b, ... bN

0.
pT- 1  (220)

0 ... 0 1

Thus T- 1 is Toeplitz. The lower triangular case follows similarly.

Theorem. The operations in Equation 105 commute. Proof. Let Z be the N x N -p matrix

consisting of the N - p identity matrix augmented with p rows of zeros and 2 be the N x N matrix

consisting of Z augmented with p columns of zeros. Then A is the N x N lower triangular Toeplitz

matrix such A = AZ. The inverse of the covariance matrix R - 1 = (BP-B*)-1 is approximated

by zeroing the last p rows of B of with fA = ZB and resizing B with if = Z* B. The neglected terms

constitute an approximation with O(p/N) error. The operations in Equation 105 are approximated

as

(A*(BP-B*)-I A)- - (A*(KK*)+A) - l (221)

For q < p , excepting zeroed elements K = ZB is lower triangular Toeplitz. Then excepting zeroed

elements, matrices (K)+ and A ZA are lower triangular Toeplitz and the same rank and thus
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they commute.

(A*(KK*)+A) 1 -' (z*A* Z(kk*)+ZAZ) 1l (222)

-(Z*A*(Kf*)+(K)+AZ)
1l (223)

-(z*(Kc*)+A*A()+z)-
1 (224)

- (AA)K (225)

since ZZ = Z and Z+ Z*. The (A*A)+ term is also approximated with O(p/N) error by (A*A) 1'

or Z(A*A) 1'Z*.
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Appendix B. Consistent 1-D Noise Estimates

Consistent estimates of stationary, autoregressive (AR), and autoregressive-moving average

(ARMA) are attained through application of the following theorems.

Theorem (stationary). A consistent estimate of the noise covariance matrix R,, of station-

ary noise sequence is attained from the difference between the observed data and the maximum

likelihood estimate of the signal. Proof. Given the Toeplitz structure of the stationary noise

covariance matrix Rw, and a consistent estimator of the elements of the covariance matrix the

autocorrelation coefficients, all that remains to be shown is that the residuals of the maximum

likelihood estimate are a consistent estimate of the noise sequence. The estimate is

*, = y - G (226)

where G§ is the ML estimate of the signal. By the triangle inequality

J* - wil = IlY- 6- (y - Gs)II (227)

< Jly- yJJ+Jas- a9JJ

= IIGs-G6I1

Since > 0, squaring both sides and taking the limit of the expected value gives

lim E{II* - w112} < lim E{IIGs- dg11}. (228)
N-co - N-c2

And since the ML estimates of the signal are consistent

lim E{II* - 2w}=o. (229)
N-cc

Theorem (AR). Consistent estimates of a AR(p) noise process are given by the approxi-

mating the maximum likelihood minimization as shown in Appendix A. Asymptotically, the same

minimization gives consistent estimates of the AR noise process. Proof. For a fixed signal the ML
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estimate of the noise is given by

i1 -**R -A • Min InlY*A(A*RwwA)-lA*YIl + - InIRwI. (230)
Rm..,111in ll (AwwA) A y~uww[ R...Nw
RwwN -NN

Taking the limit and introducing the reflection coefficient decomposition of In IRwwI from [51] where

IkI < 1 gives

P

minlny*A(A*RwwA)-lA*y - lim E n(l-k,)
n=1

miny*A(A*RwwA)- 1 A*y. (231)
Rw

Theorem (ARMA). Consistent estimates of a ARMA(p) noise process are also given by the

approximating the maximum likelihood minimization as shown in Appendix A. The AR and MA

parts of the noise can be estimated separately when the AR part of the noise process contains most

of the noise energy (i.e. the noise poles are close to the unit circle in the complex plane, and the

noise poles are separated in frequency from the moving average zeros). Proof. The AR process

is estimated first. Then the AR theorem may be applied. The stationary theorem may then be

applied to the whitened residuals of the noise process. *VMA = L+R(y-G§) where RAR = L*RLAR

and (.)+ indicates pseudoinverse.
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Appendix C. A Bound on the MSE of Estimates

A useful measure of how well the estimates, 0 = [1 02 0 j, match the parameters,

0, of a model is Mean Square Error (MSE),

MSE = (01 - 01)2. (232)

When the error covariance matrix is defined as

C = E{(0 - 0)(0 - 0)T}, (233)

the MSE of the ith parameter is the ith diagonal element of the matrix C , (C)ii. And when

the estimate is unbiased, E{O} = 0, the error covariance matrix is the covariance matrix of the

estimator,

C = E{(0 - E{d} + Ei)+ E{}- )T} (234)

SE{(O- E{O})(0 - E{0})T }+(E{o} - )(E{0} - O)T (235)

= E{(0 - E{0})(0 - E{ O}) T }. (236)

In Maximum Likelihood (ML) estimation, the estimates of the parameters are given by the

zeros of the score function s(9, x), the derivative of the probability density, f, of the observed data,

x, with respect to the parameters 0,

s(9, x) = Info(x) = 0. (237)

When the ML estimate exists, it is unbiased and a bound on the ML MSE is the Cram~r-Rao

Bound (CRB). The following two facts reveal this bound.

1) The score function is identically correlated with the error [66]. Since the estimate is

unbiased

E{0- 0} = 0 (238)

or equivalently

J dxfo(x)(O - T= oT (239)
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Under regularity conditions, the derivative with respect to 0 of this equation is given by

Jdx a fo(x)(9 - 9), - j dxfo (x) I 0 O, (240)

or since 8 fo(x) =fo (x) 81n fo(x) and f dxfo (x) = 1,

Jxf (x FOITo(X )=1 (241)

Which is the first fact,

Ejs(9, x)(0 - 9)T} 1. (242)

2) A matrix inequality [51]. The covariance matrix of the random vector y - R,,R-lz is

positive semidefinite,

E{(y - Ry,,Rjz)(y - Ry- 2R- Z)T} =Ry- 2RyzRz 1
zRyT'Z + RyJzR-'R,,Rz 1zRyz

=- Y - RYZRjZRY'Z >! 0. (243)

Let y 0 and z =s(9, x) then Ry I from the first fact and from the second fact the

CRB is

C > (Els(9, x)s(9, X)T})1 j-1(0), (244)

where J(9) =Efs(9, x)s(9, X)T} is the Fisher Information matrix. Then the MSE of the ith param-

eter is hounded by the ith diagonal term of the inverse of the FIM.

E(Oj _ 9.)2 > (J- 1 )ii. (245)
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Appendix D. Cramer-Rao Bound for Deterministic Exponentials

This appendix describes the Cram6r-Rao (CR) bound for damped exponentials in colored

noise. The bounds are computed by inverting the Fisher information matrix (FIM). The general

form for the kith element of the FIM for a complex circular Gaussian process [71] is described in

terms of the mean Gs and covariance o-2 Rww of the damped exponential in colored noise process

as
.=Gs 2 1 bGs -2 2 Rw_ ) (246)gkt = 2Re( -u- - Rww-) + tr(or- Rww1( 0* !Rw1 6 ' (46

Ok W60, W +0 trC 2 W 601R~

where the parameters are represented in the real vector

0=[ -
2  i 17 T arg(J)T is1T arg(s)T il arg(A) T ]T, (247)

whose kth element is Ok. As is the case for undamped exponentials [16] the estimation bounds for

the exponentials and the colored noise are decoupled and the FIM has the structure,

J j( 2 j , ) 0 (248)
0 J(s, A)

where

2 1 -1 6 2RwwR-1 60 2 Rww -
-4tr(R ), (249)

J(s, A)k Gs 1 Gs (250)

_- kW 601 20

This decoupling is due to the Wold decomposition [51] which shows that any regular wide sense sta-

tionary random process can be separated into a regular random process and a purely deterministic

process. Specific bounds for an AR noise process and the J(o2, 7j) block of the FIM are developed

in [16]. The structure of the damped exponential block has also been developed [67], [10] for the

case of white noise and colored noise, respectively.

Compactly written the damped exponential bounds are

2 • 1
J(s, A) = W2-Re(F*RwwF) (251)
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where the N x 4p matrix F is

F [GT jGE. DGDA' jDGE] (252)

where

T E diag{ exp(j arg(si)) exp(j arg(s2 )) .. exp(j arg(sp)) b(253)

E diag{ 8 s 2  .. S}1(254)

A E diag{ IAu IA21 ... I }, (255)

D diagf 0 1 .. N}1. (256)

The CR hounds are then given by E(Ok - Ok ) 2 > (J 1
l)kk.
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Appendix E. Method of Direction Estimation (MODE)

The MODE algorithm is described in [71] [69], and [82]. MODE minimizes

mintr (A(A*A)-A*VWV*) (257)A

where the eigendecomposition of the data matrix is YY* = V(D - o2IpP)V* + O2 IM×M and the

columns V are the eigenvectors of Y associated with the p largest eigenvalues (the elements of the

diagonal matrix D), a2 is the average of the remaining eignevalues and the optimal weighting [50]

is W = (D - o2 IvPv) 2D-'. The minimization in equation 257 is computed in a similar manner to

IQML as

min a* F*Fai. (258)
a,

where F = [ CF1  CFP ]T and C (A*A)i./

Vp+i n ... V",

FnT VP+ 2 ,n ... V 2 ,n

VM,n "'" VM-p,n

and Vk is the kith element of VW 1 / 2. Essentially a data matrix similar to Y is formed from

each eigenvector in V weighted by W 1/ 2 and these data matrices are stacked (for simultaneous

minimization).
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Appendix F. A lower memory method for implementing 2-D IQML

In the original version of 2D-IQML the following procedure produce the kernel that is used

to predict the 2-D frequencies:

T = (WW*)+Y

K = Y*T.

Since W is ((2M 1 - 1)(M2 - p) + M1 - 1)x M1M 2 this requires the SVD and pseudoinverse

of a ((2M 1 - 1)(M2 - p) + M1 - 1) x ((2M , - 1)(M2 - p) + M1 - 1) matrix. The same kernel can

be produced with less memory by taking advantage of the smaller column width of W and the fact

that (WW*)+ = ((W* W)+ W*)* (W* W)+ W* which give us the following procedure:

S = (W*W)+W*Y

K = S*S

We can see that the results are equivalent by expanding both equations. In the first case

K = Y*((UDV*)(UDV*)*)+Y = Y*(UDV*VD*U*)+Y

Y*(UDD*U*)+Y = y*U(DD*)+U*Y

In the second case

S = ((UDV*)*(UDV*))+(UDV*)*Y = (VD*U*UDV*)+VD*U*Y

(VD*DV*)+VD*U*y = V(D*D)+V*VD*U*Y = V(D*D)+D*U*Y.

And

K = S*S = (V(D*D)+D*U*Y)*V(D*D)+D*U*Y

Y*UD(D*D)+*V*V(D*D)+D*U*y Y*UD(D*D)+*(D*D)+D*U*y
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where all the inner matrices are diagonal and commute. Thus

K = Y *U(D*D)+*(D*D)+(D*D)U*Y = Y *U(DD*)+U*Y

or the same result as the first case.
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